3rd internacional meeting on
vector and parallel processing

§ 1998
June, 21 - 23

#

Faculdade de Engenharia
da Universidade do Porto

Proceedings
Part [(June 21)

o nm e ey SO A
T 4

—_—
~
~LO
OO
| —
D
™o
L g
[—
| -
™2

I

REPORT DOCUMENTATION PAGE

Form Approved OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this
collection of information, including suggestions for reducing this burden to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson
Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE

10 August 1998

3. REPORT TYPE AND DATES COVERED

Conference Proceedings

4. TITLE AND SUBTITLE

VECPAR 98 3rd International Meeting on Vector and Parallel Processing

5. FUNDING NUMBERS

F6170898W0009

6. AUTHOR(S)

Conference Committee

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Faculdade de Engenharia da Universidade do Porto
Seccao dos Bragas

Porto Codex 4099

Portugal

8. PERFORMING ORGANIZATION
REPORT NUMBER

N/A

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

EOCARD
PSC 802 BOX 14
FPO 09499-0200

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

CSP 98-1006

11. SUPPLEMENTARY NOTES

Consists of three volumes.

12a. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution is unlimited.

12b. DISTRIBUTION CODE
A

13. ABSTRACT (Maximum 200 words)

The Final Proceedings for VECPAR 98 3rd International Meeting on Vector and Parallel Processing, 21 June 1998 - 23 June 1998

This is an interdisciplinary conference. Topics include paralle! and distributed computing, image processing and synthesis, real-time and

embedded systems.

14. SUBJECT TERMS

Computers, Signal Processing, Mathematics, Modelling & Simulation

15. NUMBER OF PAGES

17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION
OF REPORT OF THIS PAGE
UNCLASSIFIED UNCLASSIFIED

1088
16. PRICE CODE
N/A
19, SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACT
OF ABSTRACT
UNCLASSIFIED UL

NSN 7540-01-280-5500

Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std. 238-18
298-102

VECPAR’98

3" International Meeting on
Vector and Parallel Processing

1998, June 21-23

Conference Proceedings

Part I
(Sunday, June 21)

. FEUP
Faculdade de Engenharia
da Universidade do Porto

Preface

This volume consists of the invited talks, papers and posters presented during
the VECPAR'98 - 3rd International Meeting on Vector and Parallel Processing.
The meeting, organised by the FEUP - Faculdade de Engenharia da Universi-
dade do Porto (Faculty of Engineering of the University of Porto), is held at
Fundagio Dr. Anténio Cupertino de Miranda, in Porto (Portugal), from 21 to 23
June, 1998.

VECPAR'98 is the third in a series of VECPAR meetings initiated in 1993
(VECPAR'93, VECPAR'96) on vector and parallel computing. The format of
previous meetings was preserved and it was organised around scientific
sessions initiated by thematic key invited lectures, followed by contributed
papers. The 66 papers and 20 posters presented at the conference were the
result of a selection from more than 120 extended abstracts originated from 27

countries.

It is our great pleasure to express our gratitude to all people that helped us
during the preparation of this event, and in particular to the members of the
Scientific Committee. Without their collaboration and prompt reviews it would
have been impossible to fulfill the deadlines imposed by the organisation. Also,
with the contribution and comments of the Scientific Committee, the authors
had the opportunity to improve the original versions of their papers.

We are very grateful to all sponsors for their support, without which the
VECPAR'98 would not have been possible.

Porto, June 1998 The Organising and Scientific Committees Chairs

Committees

Organizing Committee

e Ligia M. Ribeiro
e Augusto de Sousa

Advisory Committee

F. Nunes Ferreira

J. Carlos Lopes

J. Silva Matos

J. César Sa

J. Marques dos Santos
R. Moreira Vidal

Scientific Committee

Chair: J. Palma (Portugal)
Vice-Chairs: J. Dongarra (USA), V. Hernandez (Spain)

P. de Miguel (Spain)

F. Moura (Portugal)

K. Nagel (USA)

M. Novotny (USA)

E. Onate (Spain)

A. Padilha (Portugal)
R. Pandey (USA)

M. Peric (Germany)

J. Pereira (Portugal)

H. Pina (Portugal) -
A. Proenga (Portugal)
R. Ralha (Portugal)

Y. Robert (France)

A. Ruano (Portugal)

D. Ruiz (France)

H. Ruskin (Ireland)

F. Silva (Portugal)

I. G. Silva (Portugal)
F. Tirado (Spain)

B. Tourancheau (France)
V. Venkatakrishnan (USA)
P. Verissimo (Portugal)
J. S. Wang (Singapore)
E. Zapata (Spain)

P. Amestoy (France)

E. Aurell (Sweden)

A. Chalmers (England)
A. Coutinho (Brazil)

J. F. Cunha (Portugal)

J. C. Cunha (Portugal)
M. Daydé (France)

1. Dekeyser (France)

R. Delgado (Portugal)

F. d'Almeida (Portugal)
J. Duarte (Portugal)

1. Duff (France, England)
D. Falcdo (Brazil)

S. Gama (Portugal)

L. Giraud (France)

S. Hammarling (England)
D. Heermann (Germany)
W. Janke (Germany)

D. Knight (USA)

V. Kumar (USA)

R. Lins (Brazil)

I. C. Long (Spain)

J. P. Lopes (Portugal)

E. Luque (Spain)

P. Marquet (France)

Sponsoring Organizations

Faculdade de Engenharia da Universidade do Porto

Céamara Municipal do Porto

European Office of Aerospace Research and Development
(EOARD)

Fundagdo Dr. Anténio Cupertino de Miranda

- Fundagdo Luso-Americana para o Desenvolvimento

Fundag@o para a Ciéncia e a Tecnologia

Fundagido para a Computagio Cientifica Nacional

Associagdo de Estudantes da Faculdade de Engenharia do Porto

Bull

Digital Equipment Portugal

ICL

Silicon Graphics

Table of Contents

PART 1

Invited Talk 1

Some Unusual Eigenvalue Problems
Zhajun Bai and Gene Golub (USA)

Technical Session 1

Parallel Preconditioners for Solving Nonsymmetric Linear
Systems

Antonio J. Garcia-Loureiro, Tomds F. Pena, J.M. Lépez-
Gonzalez and L1. Prat Vifias (Spain)

Parallel Preconditioned Solvers for Large Sparse Hermitian
Eigenproblems
A. Basermann (Germany)

Comparisons of Parallel Algorithms to Evaluate Orthogonal
Series
R. Barrio (Spain)

Technical Session 2

Coarse-grain Parallelization of a Multi-Block Navier-Stokes
Solver on a Shared Memory Parallel Vector Computer
P. Wijnandts and M.E.S. Vogels (The Netherlands)

Using Synthetic Workloads for Parallel Task Scheduling
Improvement Analysis
Jodo Paulo Kitajima and Stella Porto (Brazil)

Influence of the Discretization Scheme on the Parallel Efficiency
of a Code for the Modelling of a Utility Boiler
P.J. Coelho (Portugal)

Technical Session 3

Parallel Implementation of Edge-Based Finite Element Schemes

for Compressible Flows on Unstructured Grids

P.RM. Lyra, R.B. Willmersdorf, M.A.D. Martins and A.L.G.A.
Coutinho (Brazil)

17

31

59

13

87

99

Parallel 3D Air Flow Simulation on Workstation Cluster
Jean-Baptiste Vicaire, Loic Prylli, Georges Perrot and Bernard
Tourancheau (France)

2D Pseudo-Spectral Parallel Navier-Stokes Simulations of the
Rayleigh-Taylor Instability
E. Fournier and S. Gauthier (France)

Technical Session 4
e A Unified Approach to Parallel Block-Jacobi Methods for the

Symmetric Eigenvalue Problem
D. Giménez, V. Herndndez and A. M. Vidal (Spain)

Solving Large-Scale Eigenvalue Problems on Vector-Parallel

Processors
David L. Harrar II and Michael R. Osborne (Australia)

Solving Eigenvalue Problems on Networks of Processors
D. Giménez, C. Jiménez, M., J. Majado, N. Marin and A. Martin
(Spain)

Invited Talk 2

e Parallel Domain-Decomposition Preconditioning for

Computational Fluid Dynamics
Timothy Barth, Tony Chan and Wei-Pai Tang (USA)

Technical Session 5
o Parallel Turbulence Simulation: Resolving the Inertial Subrange

of Kolmogorov's Spectra
Thomas Gerz and Martin Strietzel (Germany)

A Svstolic Algorithm for the Factorisation of Matrices Arising in
the Field of Hydrodynamics
S. G. Seo, M. J. Downie, G. E. Hearn and C. Phillips (UK)

The Study of a Parallel Algorithm Using the Backward-Facing
Step Flow as a Test Case
P.M. Areal and J.M.L.M. Palma (Portugal)

High Performance Cache Management for Parallel File Systems
F. Garcia, J. Carretero, F. Pérez and P. de Miguel (Spain)

127

139

153

167

181

209

239

Technical Session 6

Parallel Jacobi-Davidson for Solving Generalized Eigenvalue

Problems
Margreet Nool and Auke van der Ploeg (The Netherlands)

o A Level 3 Algorithm for the Symmetric Eigenproblem

Dieter F. Kvasnicka, Wilfried N. Gansterer and Christoph W.
Ueberhuber (Austria)

Synchronous and Asynchrounos Parallel Algorithms with
Overlap for Almost Linear Systems
Josep Arnal, Violeta Migallén and José Penadés (Spain)

Spatial Data Locality With Respect to Degree of Parallelism in
Processor-and-Memory Hierarchies

Renato J. O. Figueiredo, José A. B. Fortes and Zina Ben Miled
(USA)

PART II

Technical Session 7

Partioning Regular Domains on Modern Parallel Computers
M. Prieto-Matias, L Martin-Llorente and F. Tirado-Fernandez
(Spain)

A Performance Analysis of the SGI Origin2000
Aad J. van der Steen and Ruud van der Pas (The Netherlands)

Parallel Computing over the Internet with Java
Hernani Pedroso, Luis M. Silva, Victor Batista, Paulo Martins,
Guilherme Soares and Telmo Menezes (Portugal)

The Parallel Problems Server: A Client-Server Model for
Interactive Large Scale Scientific Computation
Parry Husbands and Charles L. Isbell (USA)

Technical Session 8

A Thread-level Distributed Debugger
Jodo Lourengo and José C. Cunha (Portugal)

New Access Order to Reduce Inter-Vector Conflicts
A. M. del Corral and J. M. Llaberia (Spain)

Multilevel Mesh Partitioning for Aspect Ratio
C. Walshaw, M. Cross, R. Diekmann and F. Shlimbach (UK)

iii

253

267

277

291

305

319

333

345

e Visualization of HPF Data Mappings and of their
Communication Cost
Christian Lefebvre and Jean-Luc Dekeyser (France)

Invited Talk 3
o Parallel and Distributed Computing in Education
Peter Welch (UK)

Technical Session 9
e An ISA comparison between Superscalar and Vector Processors
Francisca Quintana, Roger Espasa and Mateo Valero (Spain)

o Implementing the Time-Warp Simulation Model in Java
Pedro Bizarro, Luis M. Silva and Jodo Gabriel Silva (Portugal)

e FEvaluation of High Performance Fortran for an Industrial
Computational Fluid Dynamics Code
Thomas Brandes, Falk Zimmermann, Christian Borel and Marc
Brédif (Germany)

Technical Session 10
e Automatic Detection of Parallel Program Performance Problems
Antonio Espinosa, Tomas Margalef and Emilio Luque (Spain)

o Registers Size Influence on Vector Architectures
Luis Villa, Roger Espasa and Mateo Valero (Spain)

o The Adaptive Restarted Procedure for ORTHOMIN(k) Algorithm
Takashi Nodera and Naoto Tsuno (Japan)

Invited Talk 4

e Reconfigurable Systems: Past and Next 10 Years
Jean Vuillemin (France)

Technical Session 11

e A Method Based on Orthogonal Transformation for the Design of
Optimal Feedforward Network Architecture
Bachiller P., Pérez R.M., Martinez P., Aguilar P.L., Calle].E.
{Spain)

s Preprocessor Based Implementation of the Versatile Advection
Code for Workstations, Vector and Parallel Computers
Gidbor Téth (Hungary)

395

409

439

453

467

481

495

507

519

541

o A Parallel N-Body Integrator Using MPI

Nuno S. A. Pereira (Portugal)

Efficient Molecular Dynamics on a Network of Personal
Computers
Giuseppe Ciaccio and Vincenzo Di Martino (Italy)

Technical Session 12

Limits of Instruction Level Parallelism with Data Speculation
José Gonzéilez and Antonio_ Gonzélez (Spain)

Simulating Magnetized Plasma with the Versatile Advection
Code
R. Keppens and G. Té6th (The Netherlands)

Parallel Grid Manipulations in Earth Science Calculations

'W. Sawyer, L. L. Takacs, A. da Silva, P. M. Lyster (USA)

Molecular Dynamics as a Natural Solver
Witold Dzwinel, Jacek Kitowski, J. Moscinski and D. Yuen
(Poland) :

Posters

Co-Design Decisions for High Performance Parallel
Architectures
J.C. Moreno and A. Alcolea (Spain)

Achieving Data Availability on Parallel and Distributed File
Systems
Francisco Rosales and Raimundo Vega (Spain)

PC and DSP based AC motor adaptive vector control system
David Juan Bedford Guaus, Antoni Arias Pujol, Emiliano
Aldabas Rubira and José Luis Romeral Martinez (Spain)

Parallel Optimisation for Optical Lens Design

Enric Fontdecaba Baig, José M. Cela Espin and Juan C. Dirsteler

Lopez (Spain)

Supercomputer Optimised Microwave Domestic Oven Design via

FD-TD
Gaetano Bellanca, Paolo Bassi, Giovanni Erbacci, Gianni de
Fabritiis and Ruggero Roccari (Italy)

561

575

585

599

611

625

639

645

651

657

663

Debugging Message Passing Parallel Applications: a General
Tool

Ana Paula Cldudio, Jodo Duarte Cunha and Maria Beatriz Carmo
(Portugal)

Parallel Ensemble-Averaged Molecular Dynamics Simulation of
Shock Wave on Distributed Memory Multicomputers
Sergey V. Zybin (Russia)

The Influence of Communication Patterns in the h-Relation
Hypothesis in the IBM SP2

J.L. Roda, C. Rodriguez, F. Almeida, D.G. Morales (Tenerife,
Spain)

One-sided block Jacobi methods for the Symmetric Eigenvalue
Problem
D. Giménez, J. Cuenca, R. M. Ralha and A. J. Viamonte (Spain)

Eﬂicienr sparse data distribution for the Conjugate Gradient on
distributed shared memory systems
D.E. Singh, F.F. Rivera and J.C. Cabaleiro (Spain)

Synchronized Parallel Algorithms on Red Black trees
Xavier Messeguer and Borja Valles (Spain)

Parallelization of GIS algorithms based on data partitioning
M. Luisa Cérdoba Cabeza and Antonio Pérez Ambite (Spain)

Emulating a superscalar processor to teach pipeline and
superscalar concepts

Santiago Rodriguez de la Fuente, M. Isabel Garcia Clemente,
Rafael Méndez Cavanillas and José M. Pérez Villadeamigo
(Spain)

A Parallel Genetic Algorithm for Solving the Partioning Problem

in Multi FPGA Systems
J. 1. Hidalgo, M. Prieto, J. Lanchares and F. Tirado (Spain)

Haskell#: A Functional Language with Explicit Parallelism
R.M.F.Lima and R.D.Lins (Brazil)

Parallel and Distributed Algorithm in State Estimatioh of Power
System Energy ‘
J. Beleza Carvalho and F. Maciel Barbosa (Portugal)

Parallel Block Two-Stage Preconditioners for the Conjugate
Gradient Method
M. Jesus Castel, Violeta Migalién and José Penadés (Spain)

vi

669

675

681

687

693

699

705

711

717

723

729

735

e Parallelization of a Direct Method for Systems of Linear

Equations
M.FE. Costa and R.M. Ralha (Portugal)

PART 111

Technical Session 13
e Parallel Genetic Algorithms for Hypercube Machines
R. Baraglia and R. Perego (ltaly)

e Parallel Quadric Rendering with Load Balancing Strategy
Dana Petcu (Romania)

e Efficient Parallelization Approaches for the SAI Representation
A. Sanchez, S. Campos and A. Rodriguez (Spain)

e Parallel Implementations of Morphological Connected Operators
Based on Irregular Data Structures
Christophe Laurent and Jean Roman (France)

Technical Session 14
e Dynamic Load Balancing in Crashworthiness Simulation
H.G. Galbas and O. Kolp (Germany)

e A Parallelization Strategy for Power Systems Composite
Reliability Evaluation
Carmen L.T. Borges and Djalma M. Falcéo (Brazil)

e Parallel Paradigms applied in a Fluid-Dynamic Problem to
model a Glass Manufacturing Process
J. Vinuesa, R. Menéndez de Llano, V. Puente and B. Torén
(Spain)

vii

741

749

763

777

791

805

813

825

Technical Session 15

e Neural Classifiers Implemented in a Transputer Based Parallel 839
Machine
J. M. Seixas, A. R. Anjos, C. B. Prado, L. P. Cal6ba, A. C. H.
Dantas and J. C. R. Aguiar (Brazil)

o Algorithm-Dependant Method to Determine the Optimal Number 851
of Computers in Parallel Virtual Machines
J.G. Barbosa and A.J. Padilha (Portugal)

Technical Session 16

e Behaviour Analysis Methodology oriented to Configuration of 865
Parallel, Real-Time and Embedded Systems
F.J. Suirez, D.F. Garcia (Spain)

» Epsilon Balanced Decomposition for Power System Simulation N.A.

on Parallel Computers
Felipe Morales S. Hugh Rudnick V. D. W. Aldo Cipriano Z.
(Chile)

Invited Talk 5
o High Performance Computing for Image Synthesis 879
Thierry Priol (France)

Technical Session 17

e Modeling Snow Transport by Wind. A Cellular Automata 895
Alexandre Masselot and Bastien Chopard (Switzerland)

o Some Concepts of the software package FEAST 907
Christian Becker, Susanne Kilian, Stefan Turek and John Wallis
(Germany)

o Dynamic Routing Balancing in Parallel Computer 921

Interconnection Networks
D. Franco, I. Garcés, E. Luque (Spain)

Technical Session 18

e Calculation of Lambda Modes of a Nuclear Reactor: a Parallel 935
Implementation using the Implicitly Restarted Arnoldi Method
Vicente Herndndez, José E. Romaén, Antonio M. Vidal, Vicent
Vidal (Spain)

viii

Stochastic Control of the Scalable High Performance Distributed

Computations
Zdzislaw Onderka (Poland)

Direct Linear Solver for Vector and Parallel Computers

Friedrich Grund (Germany)

Invited Talk 6

The Design of an ODMG Compatible Parallel Object Database

Server
Paul Watson (UK)

Technical Session 19

Parallel Query Processing in a Shared-Nothing Object Database

Server
L.A.V.C. Meyer M.L.Q. Mattoso (Brazil)

High Performance Computing of a New Numerical Algorithm for
an Industrial Problem in Tribology
M. Arenaz, R. Doallo, G. Garcia and C. Vazquez (Spain)

Distributed Simulation Strategies of Graphite Electrode Forming
Process

M. Danielewski, B. Bozek, K. Holly, G. Mysliwiec, J. Sipowicz
and R. Schaefer (Poland)

Technical Session 20
e Experimental Analysis of a Parallel Quicksort-Based Algorithm

for Suffix Array Generation

Autran Macédo, Elaine Spinola Silva, Denilson Moura Barbosa,
Marco Anténio Cristo, Jodo Paulo Kitajima, Berthier Ribeiro,
Gonzalo Navarro and Nivio Ziviani (Brazil)

o A Low Cost Distributed System for FEM Parallel Structural

Analysis
C.O. Moretti, T.N. Bittencourt and L.F. Martha (Brazil)

Low Cost Parallelizing, a Way to be Efficient
Marc Martin and Bastien Chopard (Switzerland)

949

963

971

1007

1021

1035

1049

1063

1077

VECPAR'98 - 3rd International Meeting on Vector and Parallel Processing

Some Unusual Matrix Eigenvalue Problems

Zhaojun Bai® and Gene H. Golub?

! University of Kentucky, Lexington. KY 40506, USA,
bailms.uky.edu
2 Gganford University, Stanford, CA 94305, USA
golub@sccm.stanford. edu

Abstract. We survey some unusual eigenvalue problems arising in dif-
ferent applications. We show that all these problems can be cast as
problems of estimating quadratic forms. Numerical algorithms based on
the well-known Gauss-type quadrature rules and Lanczos process are re-
viewed for computing these quadratic forms. These algorithms reference
the matrix in question only through a matrix-vector product operation.
Hence it is well suited for large sparse problems. Some selected numerical
examples are presented to illustrate the efficiency of such an approach.

1 Introduction

Matrix eigenvalue problems play a significant role in many areas of computa-
tional science and engineering. It often happens that many eigenvalue problems
arising in applications may not appear in a standard form that we usually learn
from a textbook and find in software packages for solving eigenvalue problems.
In this paper, we described some unusual eigenvalue problems we have encoun-
tered. Some of those problems have been studied in literature and somie are new.
We are particularly interested in solving those associated with large sparse prob-
lems. Many existing techniques are only suitable for dense matrix computations
and becomes inadequate for large sparse problems.

We will show that all these unusal eigenvalue problems can be converted to
the problem of computing a quadratic form uT f(A)u, for a properly defined
matrix A, a vector u and a function f. Numerical techniques for computing the
quadratic form to be discussed in this paper will based on the work initially
proposed in [6] and further developed in [11.12,2]. In this technique. we first
transfer the problem of computing the quadratic form to a Riemann-Stieltjes
integral problem, and then use Gauss-type quadrature rules to approximate the
integral, which then brings the orthogonal polynomial theory and the underlying
Lanczos procedure into the scene. This approach is well suitable for large sparse
problems. since it references the matrix A through a user provided subroutine
to form the matrix-vector product Az.

The basic time-consuming kernels for computing quadratic forms using par-
allelism are vector inner products, vector updates and matrix-vector products:
this is similar to most iterative methods in linear algebra. Vector inner prod-
ucts and updates can be easily parallelized: each processor computes the vector-
vector operations of corresponding segments of vectors {local vector operations

FEUP - Faculdade de Engenharia da Universidade do Porto

(LVOs)). and if necessary, the results of LVOs have to sent to other processors
to be combined for the global vector-vector operations. For the matrix-vector
product, the user can either explore the particular structure of the matrix in
question for parallelism, or split the matrix into strips corresponding to the
vector segments. Each process then computes the matrix-vector product of one
strip. Furthermore, the iterative loop of algorithms can be designed to overlap
communication and computation and eliminating some of the synchronization
points. The reader may see [8,4] and references therein for further details.

The rest of the paper is organized as follows. Section 2 describes some unusual
eigenvalue problems and shows that these problems can be converted to the
problem of computing a quadratic form. Section 3 reviews numerical methods for
computing a quadratic form. Section 4 shows that how these numerical methods
can be applied to those problems described in section 2. Some selected numerical
examples are presented in section 5. Concluding remarks are in section 5.

2 Some Unusual Matrix Eigenvalue Problems

2.1 Constrained eigenvalue problem

Let A be a real symmetric matrix of order N, and ¢ a given N vector with
¢Te = 1. We are interested in the following optimization problem

max z! Az (1)
T
subject to the constraints
eTe=1 (2)
and
Tz =0. (3)
Let
é(z, A\ p) = 2T Az = MzTz — 1) + 2uz7c, (4)

where A, u are Lagrange multipliers. Differentiating (4) with respect to x, we are
led to the equation
CAr = Az 4+ pe=0.

Then
r=—pu(A-=X)"le

Using the constraint (3), we have
T(A=A)"te=0. (5)

An equation of such type is referred as a secular equation. Now the problem
becomes finding the largest A of the above secular equation.

We note that in [10]. the problem is cast as computing the largest eigenvalue
of the matrix P.4P, where P is a project matrix P = I — ccl.

VECPAR’98 - 3rd International Meeting on Vector and Parallel Processing

2.2 Modified eigenvalue problem

Let us consider solving the following eigenvalue problems
Az = Az

and
(A+ccT)z = A&

where A is a symmetric matrix and c is a vector and without loss of generality,
we assume T ¢ = 1. The second eigenvalue problem can be regarded as a modifed
or perturbed eigenvalue problem of the first one. We are interested in obtaining
some. not. all, of the eigenvalues of both probiems. Such computation task often
appears in structural dynamic (re-)analysis and other applications [3].

By simple algebraic derivation, it is easy to show that the eigenvalues X of
the second problem satisfy the following secular equation

1+ cT(A=-A)"te=0. (6)

2.3 Constraint quadratic optimization

Let A be a symmetric positive definite matrix of order N and ¢ a given N vector.
The quadratic optimization problem is stated as the following:

min 2TAz — 272 (7)
xr

with the constraint

where o is a given scalar. Now let
6(z,A) = 2T Az — 2Tz + MazTz — o) 9) -

where) is the Lagrange multiplier. Differentiating (9) with respect to r, we are
led to the equation i

(A+ Xz —c=0
By the constraint (8). we are led to the problem of determining A > 0 such that
T(A+ M) % =a” (10)
Furthermore. one can show the existence of a unique positive A™ for which the

above equation is satisfied. The solution of the original problem (7) and (8) is
then * = (A + A1)~ te

FEUP - Faculdade de Engenharia da Universidade do Porto

2.4 Trace and determinant

The trace and determinant problems are simply to estimate the quantities
n
tr(A71) = ZeiTA_lei
i=1

and

det(A)

for a given matrix A. For the determinant problem, it can be easily verified that
for a symmetric positive definite matrix A:

In(det(4)) = tr(In(A)) = Y el (In(4))e;. (11)
i=1

Therefore, the problem of estimating the determinant is essentially to estimate
the trace of the matrix natural logarithm function In(A).

2.5 Partial eigenvalue sum

The partial eigenvalue sum problem is to compute the sum of all eigenvalues less
than a prescribed value a of the generalized eigenvalue problem

Az = ABz, (12)

where A and B are real N x N symmetric matrices with B positive definite.
Specifically. let {);} be the eigenvalues: one wants to compute the quantity

Tazz:)\;

A <a

for a given scalar a.
Let B = LLT be Cholesky decomposition of B. the problem (12) is then
equivalent to
(L7'AL Ty LTe = AL 2.

Therefore the partial eigenvalue sum of the matrix pair (4. B) is equal to the
partial eigenvalue sum of the matrix L=YAL-T which. in practice. does not need
to be formed explicitly.

A number of approaches might be found in literature to solve such problem.
Our approach will based on constructing a function f such that the trace of
F(L=YAL-T) approximates the desired sum 7,. Specifically, one wants to con-
struct a function f such that

. Aio A <a)
f(/\1)— {0. if/\1'>Cl. (1)’)

VECPAR'98 - 3rd International Meeting on Vector and Parallel Processing

fori=1.2,...,N. Then tr(f(L~'AL™T)) is the desired sum 7,. One of choices
is to have the f of the form

£(6) = ¢g(€) (14)

_ 1
- 1+exp(§-;—°‘>‘

where & is a constant. This function, among other names, is known as the Fermi-
Dirac distribution function [15, p. 347). In the context of a physical system, the
usage of this distribution function is motivated by thermodynamics. It directly
represents thermal occupancy of electronic states. & is proportional to the tem-
perature of the system, and a is the chemical potential (the highest energy for
occupied states).

Tt is easily seen that 0 < g(¢) < 1 for all { with horizontal asymptotes 0 and
1. (a. %) is the inflection point of g and the sign of x determines whether g is
decreasing (x > 0) or increasing (x < 0). For our application, we want the sum
of all eigenvalues less than a, so we use & > 0. The magnitude of k determines
how “close” the function g maps { < a to 1 and ¢ > o to 0. As k — 07, the
function g(¢) rapidly converges to the step function h(¢).

_J1 if (<«
h(C)_{O if ¢>a.

where

-

9(¢)

The graphs of the function g(¢) for = 0 and different values of the parameter
x are plotted in Figure 1.

Fig. 1. Graphs of g(¢) for different values of x where a = 0.

With this choice of f(¢), we have

ra= 3 A atu(fLTHALTT)) = Sl LT AL e (15)
i=1

A <a

FEUP - Faculdade de Engenharia da Universidade do Porto

In summary, the problem of computing partial eigenvalue sum becomes comput-
ing the trace of f(L~1AL"T).

3 Quadratic Form Computing

As we have seen. all those unusual eigenvalue problems presented in section 2
can be summarized as the problem of computing the quadratic form ul f(A)u,
where 4 is a N x N real matrix, and u is a vector, and f is a proper defined
function. One needs to find an approximate of the quantity u” f(A)u, or give a
lower bound ¢ and/or an upper bound v of it. Without loss of generality, one
may assume u’ u = 1.

The quadratic form computing problem is first proposed in [6] for bounding
the error of CG method for solving linear system of equations, It has been
further developed in [11,12,2] and extended to other applications. The main
idea is to first transform the problem of the quadratic form computing to a
Riemann-Stieitjes integral problem, and then use Gauss-type quadrature rules
to-approximate the integral, which then brings the orthogonal polynomial theory
and the underlying Lanczos procedure into the picture.

Let us go through thé main idea. Since A4 is symmetric, the eigen-decomposition
of Ais given by A = QT AQ, where @ is an orthogonal matrix and 4 is a diagonal
matrix with increasingly ordered diagonal elements A;. Then we have

N
uTf(A)u = T QT F(A)Qu = T f(A)i =y F(N)i,
i=1

where @ = (i#;) = Qu. The last sum can be considered as a Riemann-Stieltjes
integral

b
WA= [fNduN),
where the measure u()) is a piecewise constant function and defined by

0, if A<a<a,
u(A) = 23;1 17';’ if A <A< A
S E =L < Av <A
and a and b are the lower and upper bounds of the eigenvalues A;.
To obtain an estimate for the Riemann-Stieltjes integral, one can use the
Giauss-type quadrature rule {9, 7]. The general quadrature formula is of the form

2
J

n m

I =Y wif(6;) + > puflm). (16)
k=1

J=1

where the weights {w;} and {px} and the nodes {6;} are unknown and to be
determined. The nodes {7} are prescribed. If m = 0. then it is the well-known

VECPAR'98 - 3rd International Meeting on Vector and Parallel Processing

Gauss rule. ¥m = land 7y = a or 7y = b, it is the Gauss-Radau rule. The
Giauss-Lobatto rule is for m =2 and 7y = ¢ and ™ = b.

The accuracy of the Gauss-type quadrature rules may be obtained by an
estimation of the remainder R[f]:

b
Rm:/fm@u%uﬂ

For example, for the Gauss quadrature rule,

a9
n

_ e N
RIS} = QM!L hﬂA—m}dMM

i=1

where @ < 7 < b. Similar formulas exist for Gauss-Radau and Gauss-Lobatto
rules. If the sign of R[f] is determined, then the quadrature formula I{f] is a
lower bound (if R[f] > 0) or an upper lower bound (if R[f] < 0) of the quantity
ul f(A)u.

Let us briefly recall how the weights and the nodes in the quadrature formula
are obtained. First. we know that a sequence of polynomials po(A), p1(A), pa(A), ...
can be defined such that they are orthonormal with respect to the measure u(A):

b 1 ifi=j
/m(A)Pj(A)du(/\)={o ifi#j

where it is assumed that the normalization condition fd,u, =1 (ie.. wWTu=1).
The sequence of orthonormal polynomials m;(A) satisfies a three-term recurrence

vipi(A) = (A = a)pi-1(A) = vj-1pj-2(A),

for j = 1.2,...,n with p_1(A) = 0 and po(A) = 1. Writing the recurrence in
matrix form, we have :

AP(A) = Top(A) + 4npn (Nen

where
pNT = [po(A). pr(N) e opnotN)] e = (0.0,
and
a1 71
71 Q2 72
Y2 a3
Tn =
. Tn-1
In-1 Cn

Then for the Gauss quadrature rule, the eigenvalues of T;, (which are the zeros
of pn(A)) are the nodes ;. The weights w; are the squares of the first elements
of the normalized (i.e.. unit norm) eigenvectors of Ty .

FEUP - Faculdade de Engenharia da Universidade do Porto

For the Gauss-Radau and Gauss-Lobatto rules, the nodes {6;}, {rx} and
weights {w;},{p;} come from eigenvalues and the squares of the first elements
of the normalized eigenvectors of an adjusted tridiagonal matrices of Tn41, which
has the prescribed eigenvalues a and/or b.

To this end, we recall that the classical Lanczos procedure is an elegant way
to compute the orthonormal polynomials {p;(A)} [16.11]. We have the following
algorithm in summary form. We refer it as the Gauss-Lanczos (GL) algorithm.

GL algorithm: Let A be a N x N real symmetric matrix, u a real N vector with
uTu = 1. f is a given smooth function. Then the following algorithm computes
an estimation I,, of the quantity u7 f(A)u by using the Gauss rule with n nodes.

— Let ¢ = u, and n:_l =0and y =0

— For j=1. 2
Loaj=25_ 1.41j_1
2. vj = Azjor = 0yTj-1 — Vj-185-2
3.5 = vl
4oxp=rifv

Conipute eigenvalues §; and the first elements wy of eigenvectors of T,
Compute I = > po; wi £ (k)

We note that the “For” loop in the above algorithm is an iteration step of the
standard symmetric Lanczos procedure [16]. The matrix A in question is only
referenced here in the form of the matrix-vector product. The Lanczos procedure
can be implemented with only 3 n-vectors in the fast memory. This is the major
storage requirement for the algorithm and is an attractive feature for large scale
problems.

On the return of the algorithm, from the expression of R[f], we may estimate
the error of the approximation I,. For example, if) (n) > 0 for any n and 1.
a < n < b, then I, is a lower bound £ of the quantity uT f(A)u.

Gauss-Radau-Lanczos (GRL) algorithm: To implement the Gauss-Radau
rule with the prescribed node 7y = @ or 7 = b, the above GL algorithm just
needs to be slightly modified. For example, with 7, = a, we need to extend the
matrix 7, to

i1+1 — [T, 711571} .

V'ne:: @

Here the parameter o is chosen such that 7 = a is an eigenvalue of T 4.
From [10], it is known that

Q:“+6n‘

where §,, is the last component of the solution § of the tridiagonal system

(Tn - a[)d B AI;_;En-

VECPAR'98 - 3rd International Meeting on Vector and Parallel Processing

Then the eigenvalues and the first components of eigenvectors of Thst gives
the nodes and weight of the Gauss-Radau rule to compute an estimation I, of
ul f(A)u. X

Furthermore, if f(2"*1)(n) < 0 for any n and n, @ < 7 < b, then I, (with b
as a prescribed eigenvalue of Tn41) is a lower bound (of the quantity uT f(A)u.
I,, (with a as a prescribed eigenvalue of Tr41) is an upper bound v.

Gauss-Lobatto-Lanczos (GLL) algorithm: To implement the Gauss-Lobatto
rule. T, computed in the GL algorithm is updated to

7 Tn n
Tn.+1 = [wez‘ t/}; } .

Here the parameters ¢ and ¢ are chosen so that a and b are eigenvalues of Tn+1.
Again, from [10], it is known that

Onb— pna N b
(P':_n:.—/‘ig- and ¢1‘= ta ,
O0n — Hn én—,un

where 6, and p, are the last components of the solutions 6 and p of the tridi-
agonal systems

(Tn —al)d = en and (T — b)p = €qn-

The eigenvalues and tle first components of eigenvectors of Tht1 gives the nodes
and weight of the Gauss-Lobatto rule to compute an estimation I, of u f(A4)u.
Moreover, if f(2")(n) > 0 for any 7, a < n < b, then I, is an upper bound v of
the quantity u” f(4)u.

Finally, we note that we need not always compute the eigenvalues and the first
components of eigenvectors of the tridiagonal matrix 7, or its modifications T 41
or T, 41 for obtaining the estimation I, or I. I,. We have following proposition.

Proposition 1. For Gaussian rule:

n

I = wif(6s) = ¢l f(Tn)er. (17)
k=1
For Gauss-Radau rule:
In =iw2f(0k)+p1f(n)=eff(o41)€1 (18)
k=1
For Gauss-Lobatto rule:
I = i“ﬁf(ﬁk) +puf(n) + pf(re) = €] f(Tar)er. (19)

k=1

Therefore, if the (1.1) entry of f(T5). f(Tps1) or f(Tn41) can be easily
computed. for example. f{A) = 1/X. we do not need to compute the eigenvalues
and eigenvectors.

FEUP - Faculdade de Engenharia da Universidade do Porto

4 Solvihg the UEPs by Quadratic Form Computing

In this section, we use the GL, GRL and GLL algorithms for solving those
unusual eigenvalue problems discussed in section 2.

Constraint eigenvalue problem Using the GL algorithm with the matrix A
and the vector ¢, we have

JTA-A"te=el (T, = M) 'es + R,
where R is the remainder. Now we may solve reduced-order secular equation
eI (Tn = M)"ter =0

to find the largest A as the approximate solution of the problem. This secular
equation can be solved using the method discussed in [17] and its implementation
available in LAPACK [1].

Modified eigenvalue problem Again, using the GL algorithm with the matrix
4 and the vector ¢. we have

l+cT(A=AD"Ye=1+4+€l(T, - A 'es + R
1

where R is the remainder. Then we may solve the eigenvalue problem of T,
to approximate some eigenvalues of A, and then solve reduced-order secular
equation

14+ (T, =AD" 'e1 =0

for X to find some approximate eigenvalues of the modified eigenvalue problem.

Constraint quadratic programming By using the GRL algorithm with the
prescribed node 7 = b for the matrix 4 and vector ¢. it can be shown that

T(A+ANT e > el (Topr + AN Py

for all A > 0. Then by solving the reduced-order secular equation

2

T (Tnpr + M) %e1 = a

for A. we obtain A, . which is a lower bound of the solution A™: A, < A
On the other hand. using the GRL algorithm with the prescribed node 7, = a.
we have

TAFAN) e < el (Togr + M)y

for all A > 0. Then by solving the reduced-order secular equation

T (Tng1 + A 776y = a?

VECPAR’98 - 3rd International Meeting on Vector and Parallel Processing

for A. We have an upper bound X, of the solution A*: A > A

Using such two-sided approximation as illustrated in Figure 2, the iteration
can be adaptively proceeded until the estimations), and X\, are sufficiently
close, we then obtain an approximation

of the desired solution A*.

Fig. 2. Two-sided approximation approximation of the solution A* for the constraint
quadratic programming problem (7) and (8).

Trace. determinant and partial eigenvalue sum As shown in sections
2.4 and 2.5. the problems of computing trace of the inverse of a matrix A.
determinant of a matrix .4 and partial eigenvalue sum of a symmetric positive
definite pair (4, B) can be summarized as the problem of computing the trace
of a corresponding matrix function f(H), where H = Aor H=LtALT
and f(A) = 1/X, In(A) or A/ (1 +exp(252)). To efficiently compute the trace
of f(H), instead of applying GR algorithm or its variations N times for each
diagonal element of f(H), we may use a Monte Carlo approach which only
applies the GR algorithm m times to obtain an unbiased estimation of tr(f(H)).
For practical purposes, m can be chosen much smaller than N. The saving in
computational costs could be significant. Such a Monte Carlo approach is based
on the following lemma due to Hutchinson {14].

Proposition 2. Let C' = (cj;) be an N x N symmetric matriz with t{(C) # 0.
Let V' be the discrete random variable which takes the values 1 and =1 each with
probability 0.5 and let = be a vector of n independent samples from V. Then
TC: is an unbiased estimator of tr{C), i.e..

E(zTCz) = t{C),

FEUP - Faculdade de Engenharia da Universidade do Porto

and
var(z7Cz) = 2 Zc?j.
i
To use the above proposition in practice, one takes m such sample vectors
=;, and then uses GR algorithm or its variations to obtain an estimation 11 a
lower hound lfff) and/or an upper bound 1/,&” of the quantity :in(H)zi:

() < Tf(H)z < v

Then by taking the mean of the m computed estimation 1Y) or lower and upper
bounds ¢4 and v, we have

(f(H)) - D)

or

m m m
1

LS <« LS aTfs <

m 4 m
i=1

150
: m 4 n
=1 i=1

v

It is natural to expect that with a suitable sample size m. the mean of the
computed bounds yields a satisfactory estimation of the quantity tr(f(H)). To
assess the quality of such estimation, one can also obtain probabilistic bounds
of the approximate value [2].

5 Numerical Examples

In this section. we present some numerical examples to illustrate our quadratic
form based algorithms for solving some of the unusual eigenvalue problems dis-
cussed 1n section 2.

5.1 Trace and determinant

Numerical results for a set of test matrices presented in Tables 1 and 2 are
first reported in [2]. Some of these test matrices are model problems and some
are from practical applications. For example, VFH matrix is from the analysis of
transverse vibration of a Vicsek fractal. These numerical experiments are carried
out on an Sun Sparc workstation. The so-called “exact” value is computed by
using the standard methods for dense matrices. The numbers in the ~Iter”-
column are the number of iterations n required for the estimation],(,') to reach
stationary value within the given tolerance value tol = 1074, namely.

Un - n—ll < tol * l[nvl‘
The number of random sample vector z; is m = 20. For those test matrices, the

relative accuracy of the new approach within 0.3% to 8.2% may be sufficient for
practical purposes.

12

VECPAR'98 - 3rd International Meeting on Vector and Parallel Processing

Table 1. Numerical Results of estimating tr(A™h)

Matrix | N | “Exact” | Iter | Estimated |Rel.err

Poisson {900(5.126¢ + 02|30-50(5.020¢e + 02 2.0%

VFH [625/5.383¢e + 02|12-21|5.366¢ + 02 0.3%
Wathen|481]2.681e + 01]33-58/2.667e + 01| 0.5%
Lehmer |200[2.000e + 04{38-70(2.017¢ + 04 0.8%

Table 2. Numerical results of estimating In{det(.4)) = tr(ln 4)

Matrix | N | “Exact” | Iter | Estimated |Rel.err

Poisson [900{1.065¢ + 03[{11-29|1.060e + 03 0.4%
VFH 62513.677¢ +-02{10-14{3.661¢ + 021 0.4%
Heat Flow|000|5.643¢ + 01] 4 |5.669¢ + 01| 0.4%
Pei 300(5.707e + 00| 2-3 |5.240¢ 4 00 8.2%

FEUP - Faculdade de Engenharia da Universidade do Porto

5.2 Partial eigenvalue sum

Here we present a numerical example from the computation of the total energy
of an electronic structure. Total energy calculation of a solid state system is
necessary in simulating real materials of technological importance [18]. Figure 3
shows a carbon cluster that forms part of a “knee” structure connecting nan-
otubes of different diameters and the distribution of eigenvalues such carbon
structure with 240 atoms. One is interested in computing the sum of all these
eigenvalues less than zero. Comparing the performance of our method with dense
methods, namely symmetric QR algorithm and bisection method in LAPACK.
our method achieved up to a factor of 20 speedup for large system on an Con-
vex Exemplar SPP-1200 (see Table 3). Because of large memory requirements.
we were not able to use LAPACK divide-and-conquer symmetric eigenroutines.
Furthermore. algorithms for solving large-sparse eigenvalue problems, such as
Lanczos method or implicitly restarted methods for computing some eigenval-
ues are found inadequate due to large number of eigenvalues required. Since the
problem is required to be solved repeatly, we are now able to solve previously
intractable large scale problems. The relative accuracy of new approach within
0.4% to 1.5% is satisfactory for the application {3].

‘)
VA

i
Y
2
/A
.Og
v‘@a‘a ‘l"
{ XK a0/
Y202t
10
(0

g‘"'}(‘.‘ ‘\Op "a,
TR Sed
s'ao’:‘vbiga?’>(¢.‘¥‘g?;g§f‘.i

>R

0=0%

30

Fig.3. A carbon cluster that forms part of a “knee” structure. and the corresponding
spectrum

[[NI

)

Spectrum

14

VECPAR’98 - 3rd International Meeting on Vector and Parallel Processing

Table 3. Performance of our method vs. dense methods on Convex Exemplar SPP-
1200. Here. 10 Monte Carlo samples were used to obtain estimates for each systems

size.

Dense methods GR Algorithm |{% Relative
n m ||Partial Sum|QR Time|BI Time||Estimate|Time| Error
480 | 349 -4849.8 7.4 7.6 -4850.2 | 2.8 0.01
960 | 648 -9497.6 61.9 51.8 -9569.6 | 18.5 0.7

1000| 675 -9893.3 80.1 58.6 |[l-10114.1]22.4 2.2
1500 987 || -14733.1 253.6 185.6 ||-14791.8|46.4 0.4
1920(1249{ -18798.5 548.3 387.7 1/-19070.872.6 14
2000{1299|| -19572.9 616.9 431.8 [-19434.7|78.5 0.7
2500|1660| -24607.6 1182.2 | 844.6 ||-24739.6117.2 0.5
3000[1976{ -29471.3 1966.4 | 1499.7 ||-29750.9{143.5 0.9
3500(2276)] -34259.5 3205.9 | 2317.4 ||-33738.5|294.0 1.5
4000(2571]| -39028.9 | 4944.3 | 3553.2 |-39318.0|306.0 0.7
4244|2701 -41299.2 5915.4 | 4188.0 |[-41389.8|339.8 0.2

6 Concluding Remarks

In this paper, we have surveyed numerical techniques based on computing quadratic
forms for solving some unusual eigenvalue problems. Although there exist some
numerical methods for solving these problems (see [13] and references therein),
most of these can be applied only for small and/or dense problems. The tech-
niques presented here reference the matrix in question only through a matrix-
vector product operation. Hence, they are more suitable for large sparse prob-
lems.

The new approach deserves further study: in particular, for error estimation
and convergence of the methods. An extensive comparative study of the trade-
offs in accuracy and computational costs between the new approach and other
existing methods should be conducted.

Acknowledgement Z. B. was supported in part by an NSF grant ASC-9313958.
an DOE grant DE-FG03-94ER25219.

References

1. Anderson. E.. Bai. Z.. Bischof. C.. Demmel. J., Dongarra. J.. Du Croz. J.. Green-
baum. A.. Hammarling. S.. McKenney, A.. Ostrouchov. S., Sorensen. D... LAPACK
Users’ Guide (second edition). SIAM. Philadelphia. 1995.

2. Bai. Z.. Fahev. M.. Golub. G.: Some large-scale matrix computation problems. J.
Coomp. Appl. Math. 74 (1996) 71-89.

3. Bai. Z.. Fahey. M., Golub. G.. Menon. M.. Richter. E.: Computing partial eigenvalue
stm in electronic structure calculations, Scientific Computing and Computationad
Mathematics Program. Computer Science Dept.. Stanford University, SCCM-9%-03.
1998&.

FEUP - Faculdade de Engenharia da Universidade do Porto

4. Barrett. R., Berry. M., Chan. F., Demmel. J., Donato. J.. Dongarra. J., Eijkhout.
V', Pozo. R.. Romine. C., van der Vorst., H.: Templates for the solution of linear
systems: Building blocks for iterative methods. SIAM, Philadelphia. 1994.

5. Carey. C., Golub, G., Law, K.: A Lanczos-based method for structural dynamic
reanalysis problems. Inter. J. Numer. Methods in Engineer., 37 (1994) 2857-2883.

6. Dahlquist, G., Eisenstat, S., Golub, G.: Bounds for the error of linear systems of

equations using the theory of moments. J. Math. Anal. Appl. 37 (1972) 151-166.

Davis. P.. Rabinowitz. P.: Methods of Numerical Integration. Academic Press, New

‘ork. 1984. .

Demmel, J., Heath. M., van der Vorst., H.: Parallel linear algebra, in Acta Numerica,

Vol.2. Cambridge Press. New York, 1993

9. Gautschi. W., A survey of Gauss-Christoffel quadrature formulae. In P. L Bultzer
and F. Feher, editors, E. B. Christoffel - the Influence of His Work on on Mathe-
matics and the Physical Sciences, pages 73-157. Birkhauser, Boston, 1981.

10. Golub, G.: Some modified matrix eigenvalue problems. SIAM Review, 15 (1973)
318-334.

1i. Golub. G., Meurant, G.: Matrices, moments and quadrature, in Proceedings of
the 15th Dundee Conference, June 1993, D. F. Griffiths and G. A. Watson. eds.,
.Longman Scientific & Technical, 1994.

12. Golub, G., Strakos, Z.: Estimates in quadratic formulas, Numerical Algorithms. &
(1994) 241-268.

13. Golub. G., Van Loan. C.: Matrix Computations. Johns Hopkins University Press.
Baltimore, MD. third edition, 1996.

14. Hutchinson, M.: A stochastic estimator of the trace of the influence matrix for
Laplacian smoothing splines, Commun. Statist. Simula., 18 (1989) 1059-1076.

15. Kerstin. K., Dorman. K. R.: A Course in Statistical Thermodynamics, Academic
Press, New York, 1971.

16. Lanczos. C.: An iteration method for the solution of the eigenvalue problem of
linear differential and integral operators, J. Res. Natl. Bur. Stand. 45 (1950) 225-
280.

17. Li.. R.-C.: Solving secular equations stably and efficiently, Computer Science Divi-
sion, Department of EECS. University of California at Berkeley, Technical Report
UCB//CSD-94-851.1994

18. Menon. M., Richter. E., Subbaswamy. K. R.: Structural and vibrational properties
of fullerenes and nanotubes in a nonorthogonal tight-binding scheme. J. Chem.
Phys., 104 (1996) 5875-5882.

~1

0

16

VECPAR’98 - 3rd International Meeting on Vector and Parallel Processing

Parallel Preconditioners for Solving
Nonsymmetric Linear Systems

Antonio J. Garcia-Loureiro’, Tomés F. Pena',
J.M. Lépez-Gonzélez®, and L1. Prat Vifas?

! Dept. Electronics and Computer Science. Univ. Santiago de Compostela
Campus Sur. 15706 Santiago de Compostela. Spain.
antonio@dec.usc.es, tomas@dec.usc.es
2 Dept. of Electronic Engineering. Univ. Politécnica de Catalunya
Modulo 4. Campus Norte.c) Jordi Girona 1y 3. 08034 Barcelona. Spain

jmlopezg@eel.upc.es .

Abstract. In this work we present o parallel version of two precondi-
tioners. The first one, is based on a partially decoupled block form of the
ILU. We call it Block-ILU(fll,T,overlap), because it permits the control
of both, the block fill and the block overlap. The second one, is based on
the SPAI (SParse Approzimate Inverse) method. Both methods are anal-
ysed and compared to the ILU preconditioner using the Bi-CGSTAB to
solve general sparse, nonsymmetric systems. Results have been obtained
for different matrices. The preconditioners have been compared in terms
of robustness, speedup and time of ezecution, to determine which is the
best one in each situation. These solvers have been implemented for dis-
tributed memory multicomputers, making use of the MPI message passing
standard library.

Keywords: parallel preconditioners, nonsymmetric linear systems, Block-
ILU, SPAI, Bi-CGSTAB.

1 Introduction

In the development of simulation programs in different research fields, from fluid
mechanics to semiconductor devices, the solution of the systems of equations
which arise from the discretization of partial differential equations, is the most.
CPU consuming part [13]. In general, the matrices are very large, sparse, non-
symmetric and are not diagonal dominant [3,12]. So, using an effective method
to solve the system is essential.

We are going to consider a linear system of equations such as:

Az =b AERY" z,beR" ’ (1)

where 4 is a sparse, nonsymmetric matrix.

FEUP - Faculdade de Engenharia da Universidade do Porto

Direct methods, such as Gaussian elimination, LU factorization or Cholesky
factorization may be excessively costly in terms of computational time and mem-
ory, specially when n is large. Due to these problems, iterative methods [1.14]
are generally preferred for the solution of large sparse systems. In this work we
have chosen a non stationary iterative solver, the Bi-Conjugate Gradient Sta-
bilized [19]. Bi-CGSTAB is one of the methods that obtains better results in
the solution of non-symmetric linear systems, and its attractive convergence be-
haviour has been confirmed in many numerical experiments in different fields [7].

In order to reduce the number of iterations needed in the Bi~-CGSTAB pro-
cess, it is convenient to precondition the matrices. This is, transform the linear
system into an equivalent one, in the sense that it has the same solution, but
which has more favourable spectral properties.

Looking for efficient parallel preconditioners is a very important topic in cur-
rent research in the field of scientific computing. A broad class of preconditioners
are based on incomplete factorizations (incomplete Cholesky or ILU) of the co-
efficient matrix. One important problem associated with these preconditioners
is their inherently sequential character. This implies that they are very hard
to parallelise, and only a modest account of parallelism can be attained, with
complicated implementations. So, it is important to find alternative forms of
preconditioners that are more suitable for parallel architectures.

The first preconditioner we present is based on a partially decoupled block
form of the-ILU [2]. This new version, called Block-ILU(fill,7,overlap), permits
the control of its effectiveness through a dropping parameter 7 and a block
fill-in parameter. Moreover, it permits the control of the overlap between the
blocks. We have verified that the fill-in control is very important for getting the
most out of this preconditioner. Its main advantage is that it presents a very
efficient parallel execution, because it avoids the data dependence of sequential
ILU, obtaining high performance and scalability. As a disadvantage is that it is
less robust than complete ILU, due to the loss of information, and this can be a
problem in very bad conditioned systems.

The second preconditioner we present is an implementation of preconditioner
SPAI (SParse Approzimate Inverse) [5,8]. This alternative has been proposed
in the last few years as an alternative to ILU, in situations where the last obtain
very poor results (situations which often arise when the matrices are indefinite
or have large nonsymmetric parts). These methods are based on finding a matrix
M which is a direct approximation to the inverse of A. so.that AM =~ I.

This paper presents a parallel version of these preconditioners. Section 2
presents the iterative methods we have used. Section 3 introduces the charac-
teristics of the Block-ILU and the SPAI preconditioners. Section 4 indicates the
numerical experiment we have studied. The conclusions are given in Section 5.

2 Iterative Methods

The sterative methods are a wide range of techniques that use successive approx-
imations to obtain more accurate solutions to linear systems at each step. There

VECPAR'98 - 3rd International Meeting on Vector and Parallel Processing

are two types of iterative methods. Stationary methods, like Jacobi. Gauss-
Seidel, SOR, etc., are older, simpler to understand and implement, but usually
not very effective. Nonstationary methods, like Conjugate Gradient, Minimum
Residual, QMR, Bi-CGSTAB, etc., are a relatively recent development and can
be highly effective. These methods are based on the idea of sequences of orthog-
onal vectors.

In recent years the Conjugate Gradient-Squared (CGS) method [1] has been
recognized as an attractive variant of the Bi-Conjugate Gradient (Bi-CG) for
the solution of certain classes of nonsymmetric linear systems. Recent studies in-
dicate that the method is often competitive with other well established methods,
such as GMRES [15]. The CG-S method has tended to be used in the solution
of two or tree—dimensional problems, despite its irregular convergence pattern,
because when it works -which is most of the time- it works quite well. Recently,
van der Vorst [19] has presented a new variant of Bi-CG, called Bi-CGSTAB,
which combines the efficiency of CGS with the more regular convergence pattern
of Bi-CG.

In this work we have chosen the Bi-Conjugate Gradient Stabilized [1,19],
because of its attractive convergence behaviour. This method was developed to
solve nonsymmetric linear systems while avoiding irregular convergence patterns
of the Conjugate Gradient Squared methods. Bi-CGSTAB requires two matrix—
‘vector products and four inner products per iteration.

In order to reduce the number of iterations needed in the Bi-CGSTAB pro-
cess, it is convenient to precondition the matrices. The preconditioning can be
applied in two ways: either we solve the explicitly preconditioned system us-
ing the normal algorithm, or we introduce the preconditioning process in the
iterations of the Bi-CGSTAB. This last method is usually preferred.

3 Preconditioners

The rate at which an iterative method converges depends greatly on the spectrum
of the coefficient matrix. Hence iterative methods usually involve a second matrix
that transforms the coefficient matrix into one with a more favorable spectrum.
A preconditioner is a matrix that affects such a transformation.

We are going to consider a linear system of equations such as:

Az=b AeR™™ sz beR (2)

where 4 is a large, sparse, nonsymmetric matrix.
If a matrix M is right-approximates coefficient matrix A in some way, we
can transform the original system as follows:

Az =b — AM Y(Mz)=> (3)
Similarly, a left-approximates can be defined by:

Ar=b —= M Az=M"" (4)

FEUP - Faculdade de Engenharia da Universidade do Porto

Al

A2

A3

A4

Fig. 1. Matrix splits in blocks

Another way of deriving the preconditioned conjugate gradients method
would be to split the preconditioner as M = M;M,, where the matrices M;
and M, are called the left and right preconditioners, and to transform the sys-
tem as

Ar=b - M AMSY(Myz) = M ' (5)

In this section we present a parallel version of two preconditioners. The first
one, is based on a partially decoupled block form of the ILU. We call it Block—
ILU(fill,7 ,overlap), because it permits the control of both the block fill and the
block overlap. The second one is based on the SPAI (SParse Approximate In-
verse) method. Both methods are analysed and compared to the ILU precondi-
tioner using the Bi—-CGSTAB to solve general sparse, nonsymmetric systems.

3.1 Parallel Block-ILU preconditioner

In this section we present a new version of a preconditioner based on a par-
tially decoupled block form of the ILU [2]. This new version, called Block-
ILU(fill,7,overlap), permits the control of its effectiveness through a dropping
parameter 7 and a block fill-in parameter. Moreover, it permits the control of
the overlap between the blocks. We have verified that the fill-in control is very
important for getting the most out of this preconditioner. The original matrix
is subdivided into a number of overlapping blocks, and each block is assigned to
a processor. This setup produces a partitioning effect represented in Figure 1,
for the case of 4 processors, where the ILU factorization for all the blocks is
computed in parallel, obtaining A; = L;U;, 1 < 1 < p, where p is the number of
blocks. Due to the characteristics of this preconditioner, there is a certain loss
of information. This means that the number of iterations will increase as the
number of blocks increases (as a direct consequence of increasing the number of
processors). This loss can be compensated to a certain extent by the information
provided by the overlapping zones.

20

VECPAR’98 - 3rd International Meeting on Vector and Parallel Processing

REGION A

REGION B

REGION C

Fig. 2. Scheme of one block

To create the preconditioner the rows of each block indicated for the param-
eter overlap are interchanged between the processors. These rows correspond
to regions A and C of figure 2. After, the factorization is carried out. Within
the loop of algorithm of resolution it is necessary to carry out the operation of
preconditioning :

LUv=w (6)

To reduce the number of operations of the algorithm, each processor only works
with its local rows. The first operation is to extend vector w’s information to the
neighbouring processors. Later we carry out in each processor the resolution of
the superior and inferior triangular system to calculate vector v. As regions A
and C have also been calculated by other processors, the value that we obtain will
vary in different processors. In order to avoid this and improve the convergency of
the algorithm it is necessary to interchange these data and calculate the average
of these values.

The main advantage of this method is that it presents a very efficient parallel
execution, because it avoids the data dependence of sequential ILU. thereby
obtaining high performance and scalability. A disadvantage is that it is less
robust than complete ILU, due to the loss of information, and this can be a
problem in very bad conditioned systems, as we will show in section 4.

3.2 Parallel SPAI preconditioner

One of the main drawback of ILU preconditioner is the low parallelism it implies.
A natural way to achive parallelism is to compute an approximate inverse M of
A, such that M-A ~ I in some sense. A simple technique for finding approximate
inverses of arbitrary sparse matrices is to attempt to find a sparse matrix A
which minimizes the Frobenius norm of the residual matrix 4M — I,

F(M) = ||AM - I||

—
~1
~—

21

FEUP - Faculdade de Engenharia da Universidade do Porto

A matrix M whose value F(M) is small would be a right-approximate inverse
of A. Similarly, a left-approximate inverse can be defined by using the objective
function .

IMA-I% (8)
These cases are very similar. The objective function 7 decouples into the sum

of the squares of the 2-norms of the individual columns of the residual matrix
AM -1, '

n
F(M) = || AM —I|F =Y | Am; - &3 (9)

j=1
in which e; and m; are the j-th columns of the identity matrix and of the matrix
M. There are two different ways to proceed in order to minimize 9. The first one
consists of in minimizing it globally as a function of the matrix M, e.g., by a
gradient-type method. Alternatively, in the second way the individual functions

fi(m) = || Am; = ejlF,5=1,...,n (10)

can be minimized. This second approach is attractive for parallel computers,
and it is the one we have used in this paper. A good, inherently parallel solution
would be to compute the columns k of M, my, in an independent way from each
other, resulting: '

1AM = IifE =3 CI(AM = Dexll; (11)
k=1
The solution of 11 can be organized into n independent systems,

min |[Ams — ellz, k=1,.,m, e =(0,..,0,1,0,..,00T (12)
my

We have to solve n systems of equations. If these linear systems were solved
without taking advantage of sparsity, the cost of constructing the preconditioner
would be of order n2. This is because each of the n columns would require O(n)
operations. Such a cost would become unacceptable for large linear systems.
To avoid this, the iterations must be performed in sparse-sparse mode. As A is
sparse, we could work with systems of much lower dimension. Let L(k) be the set
of indices j such that m(7) # 0. We denote the reduced vector of unknowns as
g (L) by 1 (L) and the resulting submatrix A(L,L) as A. Similarly. we define
ér = er(L). Now, solving 12 is transformed into solving:

min || Arive — &) (13)

Due to the sparsity of 4 and M, the dimension of systems 13 is very small. To
solve these systems we have chosen direct methods. We are using these methods
instead of an iterative one, mainly because the systems 13 are very small and
almost dense. Of the different alternatives we have concentrated on QR and LU
methods [17]. k

The QR factorization of matrix 4 € R™*" is given by 4 = QR where R
s an m-by-n upper triangular matrix and Q is an m-by—m unitary matrix.

22

VECPAR’98 - 3rd International Meeting on Vector and Parallel Processing

This factorization is better than LU because it can be used for the case of
non squared matrices, and also works in some cases in which LU fails due to
problems with too small pivots [10]. The cost of this factorization is O(§n?®).
The other direct method we have tested is LU. This factorization and the closely
related Gaussian elimination algorithm are widely used in the solution of linear
systems of equations. LU factorization expresses the coefficient matrix, A. as
the product of a lower triangular matrix, L, and an upper triangular matrix, U.
After factorization, the original system of equations can be written as a pair of

triangular systems,
Az =b (14)

Ly=b Uz=y (15)

The first of the systems can be solved by forward reduction, and then back sub-
stitution can be used to solve the second system to give . The advantage of
this factorization is that its cost is O(2n?), lower than that of QR. We have
implemented the two solvers in our code, specifically, the QR and the LU de-
composition with pivoting. An efficient implementation consists of selecting the
QR method if the matrix is not squared. In the case that it is squared, we will
resolve the system by using LU, as this is faster than QR. Morever, there is also
the possibility of using QR if some error is produced in the construction of the
factorization LU.

1qn the next section we have compared the results we have obtained with these
methods. In this code the SPAI parameter £ indicates the number of neighbours
of each point we use to reduce the system. The main drawback of preconditioners
based on the SPAI idea is that they need more computations than the rest. So,
in the simplest situations and when the number of processors is small, they may
be slower than ILU based preconditioners.

4 Numerical experiments

4.1 Test problem specification

The matrices we have tested are from the simulation of heterojunction bipo-
lar transistors [9,11]. These matrices are highly sparse, not symmetric and. in
general, not diagonal dominant. They were obtained by applying the method of
finite elements to heterojunction bipolar devices, in concrete for transistors of
InP/InGaAs [6].

The basic equations of the semiconductor devices are Poisson’s eq. and elec-
tron and hole continuity, in a stationary state:

div(eVy) = gqlp—-n+Np—Ny) (16)
div(J,) = qR (7)
div(J,) = -qR (18)

where 1" is the electrostatic potential, g is the electronic charge, ¢ is the dielectric
constant of the material, n and p are the electron and hole densities, N and

23

FEUP - Faculdade de Engenharia da Universidade do Porto

Table 1. Time (sec) for Block-ILU

Proc 2 4 6 8 10

FILL=0/Overlap=1 0.86 047 029 021 0.18
FILL=0/Overlap=3 0.83 041 029 022 0.8
FILL=0/Overlap=6 0.83 043 029 021 0.17
FILL=2/Overlap=1 0.38 0.18 0.12 0.094 0.077
FILL=4/Overlap=1 0.38 0.19 0.12 0.095 0.077

N7 are the doping effective concentration and J,, and J, are the electron and
hole current densities, respectively. The term R represents the volume recombi-
nation term, taking into account Schokley-Read-Hall, Auger and band-to-band
recombination mechanisms [20].

For this type of semiconductors it is usual to apply at first a Gummel type
method of resolution [16], which uncouples the three equations and allows us to
obtain an initial solution for the system coupled with the three equations. For the
semiconductors we use we have to solve the three equations simultaneously. The
pattern of these matrices is similar to those in other fields such as applications
of CFD [3.4].

We have distributed the matrix in rows and have obtained an optimum dis-
tribution of the work load among the processors.

All the results have been obtained in a CRAY T3E multicomputer [18]. We
have programmed it using the SPMD paradigm, with the MPI library, and we
have obtained results with several matrices of different characteristics.

4.2 Parallel Block-ILU preconditioner

We have carried out different tests to study how the parameters of fill-in and
overlup affect the time of calculation and speedup for the resolution of a system
of equations. In tables 1 and 2 we show the times of execution and speedup
for a badly conditioned matrix with N = 25000. Time is measured from two
processors onwards, because we have memory problems trying to run the code
in a single processor. So the speedup is computed as: '

speedup, = (19)

P
ET;
where T, is the time of execution with two processors.
With respect to the results shown in table 1 note that, if we maintain constant
the value of the fill-in, when the value of the overlap is increased the time of
execution hardly varies. This is because the only variation is in the size of the
message to be transmitted, whereas the size of the overlap zone in comparison
to the total is minimum. Therefore the increase in the computations is small.
However, if we maintain constant the value of the overlap and increase the fill-
in a significant variation is observed. This is because the number of iterations
decreases considerably

24

VECPAR'98 - 3rd International Meeting on Vector and Parallel Processing

Table 2. Speedup for Block-ILU

Proc 2 4 6 8 10

FILL=0/Overlap=1 1.0 182 296 409 4.77
FILL=0/Overlap=3 1.0 2.02 2.86 3.77 4.66
FILL=0/Overlap=6 1.0 191 2.84 392 4.53
FILL=2/Overlap=1 1.0 210 3.16 404 4.93
FILL=4/Overlap=1 1.0 2.00 3.16 40 4.93

Table 3. Time (sec) for SPAI with LU

Proc 2 4 6 8 10 Iter.
L=0 2.19 1.10 0.76 0.54 046 47
L=1 1.93 097 0.66 048 041 35
L=2 1.51 0.86 0.52 0.38 0.32 22
L=3 141 0.73 0.49 0.35 0.32 17
L=4 1.46 073 049 0.37 031 13
L=5 1.60 0.79 051 039 033 11

As regards the values of speedup in table 2, the values obtained are signifi-
cantly better in all cases, although the algorithm obtains slightly better results
when the level of fill-in is increased for a constant level of overlap. However,
for a constant level of fill-in the speedup decreases very smoothly as the level
of overlap increases. This is because it is necessary to carry out a large number
of operations and the cost of communications is also a little higher. From the
results obtained it is possible to conclude that the best option is to choose the
lowest value of overlap with which we can assure convergency with an average
value of fill-in.

4.3 Parallel SPAI preconditioner

First we are going to compare the results we have obtained with the two direct
solvers we have implemented in section 3.2. For a bad conditioned system of
N = 25000 we have obtained the results shown in figure 3. These data refer to
the cost of generating the matrix for each node with.an overlap level 1. In this
case resulting submatrices are of rank 3. Note that the cost of QR factorization
is significantly higher than that of LU. This difference is much larger for higher
values of the overlap level.

Table 3 shows the time used to solve a badly conditioned matrix with N =
925000, as well as the number of iterations of the Bi-CGSTAB solver. Note that
as the value of parameter L increases, the number of iterations decreases because
the preconditioner is more exact. As regards speedup, in all the cases values close
to optimum are obtained. and in some cases even surpassed due to phenomena
of superlineality. For this class of matrices the optimum value of parameter L

25

FEUP - Faculdade de Engenharia da Universidade do Porto

0.3
LU ——
QR =
0.25 1
02}
n
3
2015 .
E
e

6
N. of processors

(a) Time versus number of processors

Fig. 3. QR versus LU on the CRAY T3E with N=25000 (bad conditioned svstem)

would be 3 or 4. From the rest of results we can conclude that the more diagonally
dominant the matrix, the smaller is the optimum value of this parameter, and
inversely, for worse conditioned matrices we will need higher values of £ to assure
the convergency.

4.4 Parallel Block—-ILU versus Parallel SPAI

In order to test the effectiveness of the parallel implementation of Block-ILU
and SPAI, we have compared them to a parallel version of the ILU(fill,r) pre-
conditioner.

In Figure 4, results are shown for the complete solution of a system of equa-
tions with N = 25000, where matrix A is a well-conditioned one (diagonal
dominant). Again time is measured from two processors, because we have mem-
ory problems trying to run the code in a single processor. It can be seen, in
Figure 4(a), that the parallel SPAI method obtains the best speedup, and that
parallel Block-ILU(0,0,1) obtains very similar results. However, the ILU(0,0)
preconditioner obtains very bad results. This is because of the bottleneck im-
plied in the solution of the upper and lower sparse triangular systems. On the
other hand, parallel SPAI is siower (Figure 4(b)) when the number of processors
is small, because of the high number of operations it implies.

In Figure 5. results are shown for a matrix with N = 25000, corresponding
to a poorlv-conditioned system. Again (Figure 5(a)) parallel SPAI and Block-
ILU(0.0,1) obtain very similar speedup results. The ILU(0.0) preconditioner ob-
tains the worst results. And again, parallel SPAI is the slower solution when the
number of processors is small (Figure 5(b)). -

From the point of view of scalability, parallel Block-ILU is worse than parallel
SPAIL This is due to the fact that Block-ILU suffers a loss of information with

26

VECPAR’98 - 3rd International Meeting on Vector and Parallel Processing

Block-ILU(0.0.1) —~—
ILU(0,0) ===
SPAI(1) o

—

x2 Speedup

6
N. ot processors

(a) Speedup versus number of processors

1
Block-ILU(0,0,1) ——
LU(0,0) -
N SPAI(1) o |
5 06
k3
g
£ 04
02}

5 6
N. of processors

(b) Time versus number of processors

Fig. 4. Results on the CRAY T3E with N = 25000 (well conditioned system)

respect to the sequential algorithm when the number of processors increases.
This means that, with some matrices, the number of iterations, and, therefore,
the total time for the BI-CGSTAB to converge, grows when the number of
processors increases, thereby degrading the effectiveness of the preconditioner.

Figure 6 shows the results for 2 non diagonally dominant and very badly
conditioned matrix with N = 25000. In this case, the system converges with the
three preconditioners, but a significant difference is noted between the SPAT and
the incomplete factorizations. Note that with preconditioner SPAI we obtain a
nearly ideal vatue of speedup, whereas in the other cases this hardly reaches 1.
irrespective of the number of processores. However, if we examine the measures
of time, it can be established that the fastest preconditioner is the ILU(3.0).
together with the Block-ILU(3,0,3), although this time hardly varies with dif-
ferent numbers of processors. On the other hand, the SPAI is much slower than

27

FEUP - Faculdade de Engenharia da Universidade do Porto

Block-ILU{(0.0,1) ~—
ILU(0,0) -~
s SPAI(4) o

x2 Speedup

6 7
N. of processors

(a) Speedup versus number of processors

1.4 i Block-ILU(0,0.1) ——
ILU(0.0) -=-

Time (sec.)

s 6 7
N. of processors
(b) Time versus number of processors

Fig. 5. Results on the CRAY T3E with N = 25000 (bad conditioned svstem)

the other two. The motive for this behaviour is that, on the one hand, Block-
ILU increases considerably the number of iterations as the number of processors
is increased, due to the loss of information that this method implies. This in-
crease compensates the reduction in the cost for iteration, which means that the
speedup does not increase. On the other hand, to guarantee convergency we must
use SPAI with high values of L, which supposes a high cost of each iteration.
However, the number of iterations does not grow as the number of processors
increases, and thereby we obtain a high level of speedup. With a large number
of processors, Parallel SPAT probably overcomes ILU based preconditioners.

5 Conclusions

Choosing the best preconditioner is going to be conditioned by the character-
istics of the system we have to solve. When it is not a very badly conditioned

28

VECPAR’98 - 3rd International Meeting on Vector and Parallel Processing

5 Block-ILU(3,0.3) ~—
1LU(3.0) -~
SPAI(5) o
4 o
o
3
v 3 R
o
Q.
2]
o
x 2 a
1 -~ e v T e nnane
0
¢ s 4 8 9 10

5 6 7
N. of processors

(a) Speedup versus number of processors

7 v
Block-1LU(3,0,3) —
. 1LU(3.0) =~
SPAK5) ©
5
g 4
o
o B
E 3 °
e
2 s
o
1
0
2 3 8 9 10

5 6 7
N. of processors

(b) Time versus number of processors

Fig. 6. Results on the CRAY T3E with N = 25000 (very bad conditioned system)

system, parallel Block-ILU appears to be the best solution, because of both
the high level of speedup it achieves and the reduced time it requires to obtain
the final solution. The Parallel SPAI preconditioner obtains very good results in
scalability, so it could be the best choice when the number of processors grows.
Moreover, we have verified that it achieves convergence in some situations where
ILU based preconditioners fail. Finally, the direct parallel implementations of
ILU obtain very poor results.

Acknowledgements
The work described in this paper was supported in part by the Ministry of Education
and Science (CICYT) of Spain under projects TIC96-1125-C03 and TIC96-1058. We

want to thank CIEMAT {(Madrid) for providing us access to the Cray T3E wmulticom-
puter.

29

FEUP - Faculdade de Engenharia da Universidade do Porto

References

1.

2.

-1

10.
11.

12.

13.

R. Barrett, M. Berry, et al. Templates for the Solution of Linear Systems: Building
Blocks for Iterative Methods. SIAM, 1994.

G. Radicati di Brozolo and Y. Robert. Parallel Conjugate Gradient-like algorithms
for solving sparse nonsymmetric linear systems on a vector multiprocessor. Parallel
Computing, 11:223-239, 1989.

A. Chapman, Y. Saad, and L. Wigton. High order ILU preconditioners for CFD
problems. Technical report, Minnesota Supercomputer Institute. Univ. of Min-
nesota, 1996.

. Filomena D.d'Almeida and Paulo B. Vasconcelos. Preconditioners for nonsymmet-

ric linear systems in domain decomposition applied to a coupled discretization of
Navier-Stokes equations. In Vector and Parallel Processing - VECPAR’96, pages
295-312. Springer-Verlag, 1996.

V. Deshpande, M. Grote, P. Messmer, and W. Sawyer. Parallel implementation of a
sparse approximate inverse preconditioner. In Springer-Verlag, editor, Proceedings
of Irregular’96, pages 63-74, August 1996.

A.J. Garcia-Loureiro, J.M. Lépez-Gonzalez, T. F. Pena, and Ll. Prat. Numerical
analysis of abrupt heterojunction bipolar transistors. International Journal of
Numerical Modelling: Electronic Networks, Devices and Fields, 1998. (in press).

. A.J. Garcia-Loureiro, T. F. Pena, J.M. Lépez-Gonzdlez, and Ll. Prat. Precondi-

tioners and nonstationary iterative methods for semiconductor device simulation.
In Conferencia de Dispositivos Electronicos (CDE-97), pages 403-409. Universitat
Politecnica de Catalunva, Barcelona, February 1997. in spanish.

. Marcus J. Grote and Thomas Huckle. Parallel preconditioning with sparse approx-

imate inverses. Siam J. Sci. Comput., 18(3):838-853, May 1997.

K. Horio and H. Yanai. Numerical modeling of heterojunctions including the
heterojunction interface. IEEE Trans. on ED, 37(4):1093-1098, April 1990.
David Kincaid and Ward Cheney. Numerical Analysis. Brooks/Cole, 1991.

J. M. Lopez-Gonzalez and Lluis Prat. Numerical modelling of abrupt InP/InGaAs
HBTs. Solid-St. Electron, 39(4):523-527, 1996.

T.F. Pena, J.D. Bruguera, and E.L. Zapata. Finite element resolution of the
3D stationary semiconductor device equations on multiprocessors. J. Integrated
Computer-Aided Engineering, 4(1):66-77, 1997.

C.S. Rafferty, M.R. Pinto, and R.W. Dutton. Iterative methods in semiconductors
device simulation. IEEE trans on Computer-Aided Design, 4(4):462-471, October
1985.

14. Y. Saad. Iterative Methods for Sparse Linear Systems. PWS Publishing Co., 1996.

16.

17.
18.

19.

20.

5. Y. Saad and M.H. Schultz. GMRES: a generalized minimal residual algorithm for

solving nonsymmetric linear systems. SIAM J. Sci. Statist. Comput., 7:856-869.
1986.

D.L. Scharfetter and H.K. Gummel. Large-signal analysis of a silicon read diode
oscillator. IEEE Trans. on ED, pages 64-77, 1969.

H. R. Schwarz. Numerical Analysis. John Wiley & Sons, 1989.

S. L. Scott. Synchronization and communication in the T3E multiprocessor. Tech-
nical report, Inc. Cray Research, 1996. ’

A. Van der Vorst. Bi-CGSTAB: A fast and smoothly converging variant of Bi-CG
for the solution of nonsymmetric linear systems. SIAM J. Sci. Statist. Comput..
13:631-644, 1992.

C.M. Wolfe, N. Holonyak, and G.E. Stillman. Physical Properties of Semiconduc-
tors, chapter 8. Ed. Prentice Hall, 1989.

30

VECPAR'98 - 3rd International Meeting on Vector and Parallel Processing

Parallel Preconditioned Solvers for Large Sparse
Hermitian Eigenproblems

Achim Basermann

C&C Research Laboratories, NEC Europe Ltd.
Rathausallee 10, 53757 Sankt Augustin. Germany
basermann@ccrl-nece.technopark.gmd.de
http://ww.ccrl—nece.technopark.gmd.de/~baserman/

Abstract. Parallel preconditioned solvers are presented to compute 2
few extreme eigenvalues and -vectors of large sparse Hermitian matri-
ces based on the Jacobi-Davidson (JD) method by G.L.G. Sleijpen and
H.A. van der Vorst. For preconditioning, an adaptive approach is ap-
plied using the QMR (Quasi-Minimal Residual) iteration. Special QMR
versions have been developed for the real symmetric and the complex
Hermitian case. To parallelize the solvers, matrix and vector partitioning
is investigated with a data distribution and a communication scheme ex-
ploiting the sparsity of the matrix. Synchronization overhead is reduced
by grouping inner products and norm computations within the QMR
and the JD iteration. The efficiency of these strategies is demonstrated
on the massively parallel systems NEC Cenju-3 and Cray T3E.

1 Introduction

The simulation of quantum chemistry and structural mechanics problems is a
source of computationally challenging, large sparse real symmetric or complex
Hermitian eigenvalue problems. For the solution of such problems, parallel pre-
conditioned solvers are presented to determine a few eigenvalues and -vectors
based on the Jacobi-Davidson (JD) method [9].

For preconditioning, an adaptive approach using the QMR (Quasi-Minimal
Residual) iteration [2.5,7] is applied, i.e., the preconditioning system of linear
equations within the JD iteration is solved iteratively and adaptively by checking
the residual norm within the QMR iteration [3,4]. Special QMR versions have
been developed for the real symmetric and the complex Hermitian case.

The matrices A considered are generalized sparse, i.e., the computation of
a matrix-vector multiplication A - v takes considerably less than n* operations.
This covers ordinary sparse matrices as well as dense matrices from quantum
chemistry built up additively from a diagonal matrix. a few outer products. and
an FFT. In order to exploit the advantages of such structures with respect to
operational complexity and memory requirements when solving systems of linear
equations or eigenvalue problems. it is natural to apply iterative methods.

To parallelize the solvers, matrix and vector partitioning is investigated with
a data distribution and a communication scheme exploiting the sparsity of the

31

FEUP - Faculdade de Engenharia da Universidade do Porto

matrix. Synchronization overhead is reduced by grouping inner products and
norm computations within the QMR and the JD iteration. Moreover. in the
complex Hermitian case, communication coupling of QMR’s two independent
matrix-vector multiplications is investigated.

2 Jacobi-Davidson Method

To solve large sparse Hermitian eigenvalue problems numerically, variants of a
method proposed by Davidson [8] are frequently applied. These solvers use a
succession of subspaces where the update of the subspace exploits approximate
inverses of the problem matrix, A. For 4, A = A¥ or A* = AT holds where A*
denotes 4 with complex conjugate elements and A = (AT)* (transposed and
complex conjugate).

The basic idea is: Let V¥ be a subspace of R™ with an orthonormal ba-
sis w¥, ..., wk, and W the matrix with columns w¥, § := WH AW, M} the
eigenvalues of S, and T a matrix with the eigenvectors of S as columns. The
columns zj of WT are approximations to eigenvectors of A with Ritz val-

ues Af = (25)" Ak that approximate eigenvalues of A. Let us assume that

- -] . .
)\és,...,/\;s“_% € [Mower Aupper)- FOr j € Js, ..., o1 define
3 Yk Ty .k ko (X 3kpy -1k
v q;? =(A—/\§I)wj, ri = (4-A71) 1qj, (1)
and V¥+! = span(V* Ur;‘»" U.. 'U7'§,+1_1) where A is an easy to invert approxi-

mation to A (A = diag(A) in [8]). Then V**! is an (m+{)-dimensional subspace
of IR™, and the repetition of the procedure above gives in general improved ap-
proximations to eigenvalues and -vectors. Restarting may increase efficiency.

For good convergence, V¥ has to contain crude approximations to all eigen-
vectors of A with eigenvalues smaller than Ajower [8]. The approximate inverse
must not be too accurate, otherwise the method stalls. The reason for this was
investigated in [9] and leads to the Jacobi-Davidson (JD) method with an im-
proved definition of 75:

(1= 2F @) (A=MD) (I~ 25 @HF)) = o) (2)

The projection (/ —;1'j~" (."cj-' YH Y in (2) is not easy to incorporate into the matrix.
but there is no need to do so. and solving (2) is only slightly more expensive
than solving (1). ‘

The method converges quadratically for A = A.

3 Preconditioning

The character of the JD method is determined by the approximation 4 to A. For
obtaining an approximate solution of the preconditioning system (2). we may
try an iterative approach [3.4.9]. Here. a real symmetric or a complex Hermi-
tian version of the QMR algorithm are used [2.5.7] that are directly applied

32

VECPAR'98 - 3rd International Meeting on Vector and Parallel Processing

to the projected system (2) with A = A. The control of the QMR iteration is
as follows. Iteration is stopped when the current residual norm is smaller than
the residual norm of QMR in the previous inner JD iteration. By controlling the
QMR residual norms, we achieve that the preconditioning system (2) is solved in
low accuracy in the beginning and in increasing accuracy in the course of the JD
iteration. For a block version of JD, the residual norms of each preconditioning
system (2) are separately controlled for each eigenvector to approximate since
some eigenvector approximations are more difficult to obtain than others. This
adapts the control to the properties of the matrix’s spectrum.

Algorithm 1 shows the QMR iteration used to precondition JD for complex
Hermitian matrices. The method is derived from the QMR variant described in
[5]. Within JD, the matrix B in Algorithm 1 corresponds to the matrix [({ —
ok (@ H) (A= XN1) (I - z¥ (2%)H)] of the preconditioning system (2).

Per QMR iteration, two matrix-vector operations with B and B* (marked by
frames in Algorithm 1) are performed since QMR bases on the non-Hermitian
Lanczos algorithm that requires operations with B and BT = B* but not with
BT [7). For real symmetric problems, only one matrix-vector operation per QMR
iteration is necessary since then ¢' = Bp' and thus vitl = ¢t — (7/4%)0" hold.
The only matrix-vector multiplication to compute per iteration is then Bwi™!.

Naturally, B is not computed element-wise from [(I -z (z§)H) (A=M1) (I-
xk (%)H)): the operation Bp', e.g., is splitted into vector-vector operations and
one matrix-vector operation with A.

Note that the framed matrix-vector operations in the complex Hermitian
QMR iteration are independent from each other. This can be exploited for a
parallel implementation (see 5.2). Moreover, all vector reductions in Algorithm 1
(marked by bullets) are grouped. This in addition makes the QMR variant well
suited for a parallel implementation (see 5.3).

4 Storage scheme

Efficient storage schemes for large sparse matrices depend on the sparsity pattern
of the matrix, the considered algorithm, and the architecture of the computer
system used [1]. Here, the CRS format (Compressed Row Storage) is applied.
This format is often used in FE programs and is suited for matrices with regular
as well as irregular structure. The principle of the scheme is illustrated in Fig. 1
for a matrix A with non-zeros a,;.

a1 0 0 0 0 O 0 0
0 a2 ' as;s 0 0 0 0 0
0 az»2 G33 0434 0 0 0 0

4= 0 0 as3 Q44 Q45 Qa6 Q47 Q48
. 0 0 0 as4 ass 0 as 7 0
0 0 0 g4 0 g6 6.7 0
0 0 0 ars4 Qrs Q76 Q7.7 0

0 0 0 as O 0O 0 axs

33

FEUP - Faculdade de Engenharia da Universidade do Porto

Algorithm 1. Complex Hermitian QMR

P=C=d"=s"=0v'=1, K°=-1, w' =v' =r"=b~ Bz°
1

™

S =t € = At = ()T, € = (BTl p = 0,70 =

|

— i i, 7=1
p==v -—pp
1. N R
1 1 !
‘=P
i
v|+1 - m _ T_i'v,
v
i
i+l _ i T
w'o=q & w
e if (|I" Y| < tolerance) then STOP
. yH =)
R €i+1 - ”wi+1“
. pi+1 — (U.’i+l)Tl)i+1
i+l _ "/lfiﬂi'"1
S
i+l _ et EEPEESURE S
T g K
o = !Ti|2(1 - Vi)
T VTR F R
o —yi(rT) k!
BCRG
l/'i+1 _ ViITiI‘E

di - eidr—l +K.ipi

s =01+ h'ini

= e d

34

VECPAR'98 - 3rd International Meeting on Vector and Parallel Processing

value: [51,1 ||(12,3|G2.2H(LSA]as,zlaa.sHa4‘3la4,4la4,s|a4,6 lﬂ4,7|(t4.5H
. 2 3 4 5 6 T 8 9 10 11 12
as 4 Ias,slas,'rHaﬁ,ﬂae,‘;lae,ﬁ “07,4167,5|a7,7|a7,ellas.4lasil
13 14 15 16 17 18 19 20 21 22 23 4

Col_ind:rl]]3]2“4[2[3|]3]4[8|6IT‘E)J
. 2 3 4 5 6 7 8 9 10 11 12
(A5 7 714]6[4[5]7[6]4][8]
5 14 15 16 17 18 19 20 =21 22 23 24

row_ptr: [1[2[4[7[13[16[19]23[25]

Fig. 1. CRS storage scheme

The non-zeros of matrix A are stored row-wise in three one-dimensional ar-
ravs. value contains the values of the non-zeros, col_ind the corresponding
column indices. The elements of row_ptr point to the position of the beginning
of each row in value and col_ind.

5 Parallelization Strategies

5.1 Data Distribution

The data distribution scheme considered here balances both matrix-vector and
vector-vector operations for irregularly structured sparse matrices on distributed
memory systems (see also [2]). The scheme results in a row-wise distribution of
the matrix arravs value and col._ind (see 4); the rows of each processor succeed
one another. The distribution of the vector arrays corresponds component-wise
to the row distribution of the matrix arrays. In the following. n; denotes the
number of rows of processor k, k = 0,...,p— 1 n is the total number. gi is
the index of the first row of processor k, and z; is the number of non-zeros
of row i. For these quantities, the following equations hold: n = Z’,\’;é n, and
Uh-= 1+ Z:;OI ;.

In each iteration of an iterative method like JD or QMR, s sparse matrix-
vector multiplications and ¢ vector-vector operations are performed. Scalar op-
erations are neglected here. With the data distribution considered, the load
generated by row 1 is proportional to

li=z-s-(+c.

The parameter ¢ is hardware dependent since it considers the ratio of the costs
for a regular vector-vector operation and an irregular matrix-vector operation.
However, different matrix patterns could result in different memory access costs.
e.g.. different caching behavior. Therefore. the parameter ¢ is determined at run-
time by timings for a row block of the current matrix within the symmetric or

35

FEUP - Faculdade de Engenharia da Universidade do Porto

Hermitian QMR solver used. The measurement is performed once on one proces-
sor with a predefined number of QMR iterations before the data are distributed.
With approximating ¢ at run-time for the current matrix, the slight dependence
of ¢ on the matrix pattern is considered in addition.

For computational load balance, each processor has to perform the p-th frac-
tion of the total number of operations. Hence, the rows of the matrix and the
vector components are distributed according to (3).

t n

1
i t livgr-1 > — l; pfork=0,1....,
lgislgl_ngm{ ;z+gk1_p;z} g

ny = Kl (3)
’ 77—2"11' fork=qg+1

1=0
0 fork=q+2,...,p—-1

For large sparse matrices and p < n, usually g=p—-1lorg+1=p~1hold It
should be noted that for ¢ = 0 each processor gets nearly the same number of
rows and for ¢ = oo nearly the same number of non-zeros.

Fig. 2 illustrates the distribution of col_ind from Fig. 1 as well as the dis-
tribution of the vectors z and y of the matrix-vector multiplication y = Ax to
four processors for { = 5, s = 2. and ¢ = 13.

Y col.ind T
Processor 0: [y [y2]ys] [1][3]2]]4]2{3] [z1]z2]z3]

. y " col.ind T
Processor 1: [yalys] [3[4[8[6]7[5][4]5]7} |z4]xs]

col_ind T

y
Processor 2: [ys]y7 [7]4]6]14]5]7]6] Te|Tr

Y col_ind xr
Processor 3:

Fig. 2. Data distribution for (=5, s =2, and ¢ = 13

In case of an heterogeneous computing environment, e.g., workstation clusters
with fast network connections or high-speed connected parallel computers. the
data distribution criterion (3) can easily be adapted to different per processor
performance or memory resources by predefining weights wy per processor k.
Only the fraction 1/p in (3) has then to be replaced by wi/ Zf;ol wi.

5.2 Communication Scheme

On a distributed memory system. the computation of the matrix-vector multi-
plications requires communication because each processor owns only a partial

36

VECPAR'98 - 3rd International Meeting on Vector and Parallel Processing

vector. For the efficient computation of the matrix-vector multiplications. it is
necessary to develop a suitable communication scheme (see also [2]). The goal
of the scheme is to enable the overlapped execution of computations and data
transfers to reduce waiting times based on a parallel matrix pattern analysis
and. subsequently, a block rearranging of the matrix data.

First. the arrays col_ind (see 4 and 5.1) are analyzed on each processor
I to determine which elements result in access to non-local data. Then, the
processors exchange information to decide which local data must be sent to
which processors. If the matrix-vector multiplications are performed row-wise.
components of the vector x of y = Az are communicated. After the analysis.
col.ind and value are rearranged in such a way that the data that results in
access to processor h is collected in block k. The elements of block h succeed one
another row-wise with increasing column index per row. Block k is the first block
in the arrays col_ind and value of processor k. Its elements result in access to
local data; therefore, in the following, it is called the local block. The goal of this
rearranging is to perform computation and communication overlapped. Fig. 3
shows the rearranging for the array col.ind of processor 1 from Fig. 2.

col_ind

Processor 1: [3]4]8]6]7[5][4]5]7]

col_ind

Reordering: ﬂﬂ @ EI

Fig. 3. Rearranging into blocks

The elements of block 1, the local block, result in access to the local com-
ponents 4 and 5 of z during the row-wise matrix-vector multiplication, whereas
operations with the elements of the blocks 0. 2, and 3 require communication
with the processors 0, 2, and 3, respectively. For parallel matrix-vector multi-
plications, each processor first executes asynchronous receive-routines to receive
necessary non-local data. Then all components of z that are needed on other
processors are sent asynchronously. While the required data is on the network.
each processor k performs operations with block k. After that, as soon as non-
local data from processor h arrives, processor k continues the matrix-vector
multiplication by accessing the elements of block h. This is repeated until the
matrix-vector multiplication is complete. Computation and communication are
performed overlapped so that waiting times are reduced.

The block structure of the matrix data and the data structures for commu-
nications have been optimized for both the real and the complex case to reduce
memory requirements and to save unnecessary operations. In addition. cache
exploitation is improved by these structures. All message buffers and the block
row pointers of the matrix structure are stored in a modified compressed row
format. Thus memory requirements per processor almost proportionally decrease

37

FEUP - Faculdade de Engenharia da Universidade do Porto

with increasing processor number even if the number of messages per processor
markedly rises due to a very irregular matrix pattern.

A parallel preanalysis phase to determine the sizes of all data structures
preceeds the detailed communication analysis and the matrix rearranging. This
enables dynamic memory allocation and results in a further reduction of memory
requirements since memory not needed any more, e.g.. after the analysis phases.
can be deallocated. Another advantage is that the same executable can be used
for problems of any structure and size.

For complex Hermitian problems, two independent matrix-vector products
with B and B* have to be computed per QMR iteration (see the framed opera-
tions in Algorithm 1). Communications for both operations — they possess the
same communication scheme — are coupled to reduce communication overhead
and waiting times.

The data distribution and the communication scheme presented here do not
require any knowledge about a specific discretization mesh; the schemes are
determined automatically by the analysis of the indices of the non-zero matrix
elements.

5.3 Synchronization

Synchronization overhead is reduced by grouping inner products and norm com-
putations within the QMR and the JD iteration. For QMR in both the real
symmetric and the complex Hermitian case, special parallel variants based on
[5] have been developed that require only one synchronization point per iter-
ation step. For a parallel message passing implementation of Algorithm 1. all
local values of the vector reductions marked by bullets can be included into one
global communication to determine the global values.

6 RESULTS

All parts of the algorithms have been investigated with various application prob-
lems on the massively parallel systems NEC Cenju-3 with up to 128 processors
(64 Mbytes main memory per processor) and Cray T3E with up to 512 proces-
sors (128 Mbytes main memory per processor). The codes have been written in
FORTRAN 77 and C: MPI is used for message passing.

6.1 Numerical test cases

Numerical and performance tests of the JD implementation have been carried
out with the large sparse real symmetric matrices Episym1 to Episym6 and the
large sparse complex Hermitian matrices Epiherml and Epiherm2 stemming
from the simulation of electron/phonon interaction [10]. with the real symmetric
matrices Struct1 to Struct3 from structural mechanics probleins (finite element
discretization). and with the dense complex Hermitian matrix Thinfilms from

38

VECPAR’98 - 3rd International Meeting on Vector and Parallel Processing

the simulation of thin films with defects. The smaller real symmetric test ma-
trices Laplace. GregCar. CulWil, and RNet originate from finite difference
discretization problems. Table 1 gives a survey of all matrices counsidered.

Table 1. Numerical data of the considered large sparse matrices

Matrix Properties Order Number of non-zeros
Episyml Real symmetric 98,800 966,254
Episym2 Real symmetric 126,126 1.823,812
Episym3 Real symmetric 342,200 3,394,614
Episymd4 Real symmetric 1,009,008 14,770,746
Episym5 Real symmetric 5,513.508 81,477,386
Episym6 Real symmetric 11,639.628 172,688,506
Epiherml Complex Hermitian 126,126 1,823,812
Epiherm2 Complex Hermitian 1,009,008 14,770,746
Thinfilms Complex Hermitian 1,413 1,996.569
Structl Real symmetric 835 13,317
Struct2 Real symmetric 2,839 299.991
Struct3 Real symmetric 25,222 3,856,386
Laplace Real symmetric 900 7,744
GregCar Real symmetric 1,000 2,998
CulWil Real symmetric 1,000 3,996
RNet Real symmetric 1,000 6.400

6.2 Effect of Preconditioning

For the following investigation about the effect on QMR preconditioning on JD,
the JD iteration was stopped if the residual norms divided by the initial norms
are less than 107°.

In Fig. 4, times for computing the four smallest eigenvalues and -vectors of
the two real symmetric matrices Episym2 and Struct3 on 64 NEC Cenju-3
processors are compared for different preconditioners.

The best results are gained for JD with adaptive QMR preconditioning and
a few preceding, diagonally preconditioned outer JD steps (4 or 1). Compared
with pure diagonal preconditioning, the number of matrix-vector multiplica-
tions required decreases from 6,683 to 953 for the matrix Episym2 from elec-
tron/phonon interaction. Note that the Lanczos algorithm used in the appli-
cation code requires about double the number of matrix-vector multiplications
as QMR preconditioned JD for this problem. For the matrix Struct3 from
structural mechanics. the diagonally preconditioned method did not converge in

39

FEUP - Faculdade de Engenharia da Universidade do Porto

Diagonal]
10 QMR steps
1000 Adaptive QMR
Adaptive QMR + diagonal steps
800 4
1]
<
&
g
¢ 600 -
£
o
£
= 400
200 i "L
. [1 B8 M

Electron/phonon interaction Structural mechanics

Fig. 4. Different preconditioners. Real symmetric matrices Episym2 and Struct3.
NEC Cenju-3. 64 processors

100 minutes. Note that in this case the adaptive approach is markedly superior
to preconditioning with a fixed number of 10 QMR iterations; the number of
matrix-vector multiplications decreases from 55,422 to 11,743.

6.3 JD versus Lanczos Method

In Table 2, the sequential execution times on an SGI O? workstation (128 MHz.
128 Mbytes main memory) of a common implementation of the symmetric Lanc-
z0s algorithm [6] and adaptively QMR preconditioned JD are compared for com-
puting the four smallest eigenvalues and -vectors. In both cases, the matrices are
stored in CRS format. The required accuracy of the results was set close to ma-
chine precision. Except for matrix CulWil — the Lanczos algorithm did not
converge within 120 minutes since the smallest eigenvalues of the matrix are
very close to each other — both methods gave the same eigenvalues and -vectors
within the required accuracy. Since the Lanczos method applied stores all Lanc-
zos vectors to compute the eigenvectors of A4 only the smallest matrices from
Table 1 could be used for the comparison.)

Table 2 shows that the JD method is markedly superior to the Lanczos algo-
rithm for the problems tested. Moreover, the results for the matrices Laplace
and CulWil— some of the smallest eigenvalues are very close to each other —
appear to indicate that JD can handle the problem of close eigenvalues much
better than the Lanczos algorithm.

40

VECPAR'98

. 3rd International Meeting on Vector and Parallel Processing

Table 2. Comparison of JD and the symmetric Lanczos algorithm. Sequential execu-
tion times. SGI O workstation

Matrix Lanczos JD Ratio
Structl 793 s 344s 23
Struct2 56334s 899.7s 6.3
Laplace 974 s 2.7s 36.1
GregCar 959s 15.7s 6.1
CulWil — 16.1s —
RNet 1979 s 418s 4.7

6.4 Parallel Performance

In all following investigations, the JD iteration was stopped if the residual norms
divided by the initial norms are less than 107° (10~1© for the Cray T3E results).

Fig. 5 shows the scaling of QMR preconditioned JD for computing the four
smallest eigenpairs of the large real symmetric electron/phonon interaction ma-
trices Episym1, Episym3, and Episym4 on NEC Cenju-3. On 128 processors,
speedups of 45.5, 105.7, and 122.3 are achieved for the matrices with increasing
order; the corresponding execution times are 8.3s, 23.3 s, and 168.3 s.

128

112

96

80

64

Speedup

48

32

16

[[*#—W Order: 1,009,008; non-zeros: 14,770,746 //
|4——=Order: 342,200; non-zeros: 3,394,614 //
@—@ Order: 98,800; non-zeros: 966,254 7

T T T 1

1 8 16 32 64 128

Processors

Fig. 5. Speedups. Real symmetric matrices Episym1, Episym3. and Episym4. elec-
tron/phonon interaction. NEC Cenju-3

In Fig. 6. speedups of QMR preconditioned JD for computing the four small-
est eigenpairs of the two large real symmetric electron/phonon interaction matri-

41

FEUP - Faculdade de Engenharia da Universidade do Porto

480 I T Order: 5,513.508: non-zeros: 81.477,386
4= Order: 1,009,008: non-zeros: 14,770,746

Speedup

32 64 128 256 512
Processors

Fig. 6. Speedups. Real symmetric matrices Episym4 and EpisymS5, electron/phonon
interaction. Cray T3E

ces Episym4 and Episym5 on Cray T3E are displayed. The problems Episym4
and Episym5 of order 1,009,008 and 5,513,508 result in execution times of 15.2 s
and 129.2 s. respectively, on 512 processors. The largest real symmetric elec-
tron/phonon interaction problem Episym6 computed of order 11,639,628 has
an execution time of 278.7 s on 512 processors.

The effect of coupling the communication for the two independent matrix-
vector multiplications per complex Hermitian QMR iteration (see the framed
operations in Algorithm 1) is displayed in Fig. 7 for computing the four smallest
eigenpairs of the dense complex Hermitian matrix Thinfilms. This matrix is
chosen since the problem is of medium size and the matrix-vector operations
require communication with all non-local processors. In Fig. 7, the execution
times on NEC Cenju-3 of JD with and without coupling divided by the total
number of matrix-vector products (MVPs) are compared.

Communication coupling halves the number of messages and doubles the
message length. By this, the overhead of communication latencies is markedly
reduced, and possibly a higher transfer rate can be reached. For the matrix
Thinfilms, coupling gives a gain of 5% to 15% of the total time. For much
larger matrices, gains are usually very slight since if the message lengths are big
latency is almost negligible and higher tranfer rates cannot be reached. For the
matrix Episym2, e.g.. corresponding timings on 128 processors give 64.5 ms
without coupling and 64.4 ms with coupling.

Fig. 8 shows the scaling of the complex Hermitian version of QMR precon-
ditioned JD for computing the four smallest eigenpairs of the two large complex
Hermitian electron/phonon interaction matrices Epiherm1 and Epiherm2 on

42

FEUP - Faculdade de Engenharia da Universidade do Porto

128 ¥—— Order: 1,009,008; non-zeros: 14,770,746 4
{4——Order: 126,126: non-zeros: 1,823,812

112

96

80 F
o
2
g 64 r ,
o Vg
v /

48 e

d
//
2+ Ve
/
v
//
F
8 3
1 - T T)
1 8 16 32 64 128
Processors

Fig. 8. Speedups. Complex Hermitian matrices Epiherml and Epiherml elec-
tron/phonon interaction. NEC Cenju-3

10

Svstems: Building Blocks for Iterative Methods. SIAM. Philadelphia (1993)

Basermann. A.: QMR and TFQMR Methods for Sparse Nonsvmmetric Problems
on Massively Parallel Systems. In: Renegar, J.. Shub, M., Smale, S. (eds.): The
Mathematics of Numerical Analysis, series: Lectures in Applied Mathematics,
Vol. 32. AMS (1996) 59-76

Basermann. A., Steffen, B.: New Preconditioned Solvers for Large Sparse Eigen-
value Problems on Massively Parallel Computers. In: Proceedings of the Eighth
SIAM Conference on Parallel Processing for Scientific Computing (CD-ROM).
SIAM, Philadelphia (1997)

Basermann, A., Steffen, B.: Preconditioned Solvers for Large Eigenvalue Problems
on Massively Parallel Computers and Workstation Clusters. Technical Report FZJ-
7ZAM-IB-9713. Research Centre Jiilich GmbH (1997)

Biicker, H.M.. Sauren, M.: A Parallel Version of the Quasi-Minimal Residual
Method Based on Coupled Two-Term Recurrences. In: Lecture Notes in Computer
Science, Vol. 1184. Springer (1996) 157-165

Cullum. J.KX., Willoughby, R.A.: Lanczos Algorithms for Large Symmetric Eigen-
value Computations, Volume I: Theory. Birkhauser, Boston Basel Stuttgart (1985)

. Freund, R.W., Nachtigal, N.M.: QMR: A Quasi-Minimal Residual Method for Non-

Hermitian Linear Systems. Numer. Math. 60 (1991) 315-339

. Kosugi, N.: Modifications of the Liu-Davidson Method for Obtaining One or Si-

multaneously Several Eigensolutions of a Large Real Symmetric Matrix. Com-
put. Phys. 55 (1984) 426-436

Sleijpen, G.L.G., van der Vorst, H.A.. A Jacobi-Davidson Iteration Method for
Linear Eigenvalue Problems. SIAM J. Matrix Anal. Appl. 17 (1996) 401-425
Wellein. G.. Roder. H., Fehske, H.: Polarons and Bipolarons in Strongly Interacting
Electron-Phonon Svstems. Phys. Rev. B 53 (1996) 9666-9675

44

VECPAR'98 - 3rd International Meeting on Vector and Parallel Processing

300 -

'¥——¥ Without coupling
|[4——* With couplin

250

200

150

JD time / number of MVPs in ms

100 |
=Y

50 +
0 b—r—r . v)
14 8 16 2 64

Processors

Fig. 7. Communication coupling. Complex Hermitian matrix Thinfilms. NEC Cenju-3

-

NEC Cenju-3. On 128 processors, speedups of 57.5 (execution time 38.8 s) and
122.5 (execution time 320.2 s) are achieved for the matrices Epiherml and
Epiherm2 of order 126,126 and 1,009,008, respectively.

7 CONCLUSIONS

By real symmetric and complex Hermitian matrices from applications. the ef-
ficiency of the developed parallel JD methods was demonstrated on massively
parallel systems. The data distribution strategy applied supports computational
load balance for both irregular matrix-vector and regular vector-vector opera-
tions in iterative solvers. The investigated communication scheme for matrix-
vector multiplications together with a block rearranging of the sparse matrix
data makes possible the overlapped execution of computations and data trans-
fers. Moreover, parallel adaptive iterative preconditioning with QMR was shown
to accelerate JD convergence markedly. Coupling the communications for the two
independent matrix-vector products in the complex Hermitian QMR iteration
halves the number of required messages and results in additional execution time
gains for small and medium size problems. Furthermore, a sequential compari-
son of QMR preconditioned JD and the symmetric Lanczos algorithm indicates
a superior convergence and time behavior in favor of JD.

References

1. Barrett. R.. Berry, M.. Chan. T.. Demmel, J.. Donato. J.. Dongarra. J.. Eijkhout.
V.. Pozo. R.. Romine, C.. van der Vorst. H.: Templates for the Solution of Linear

43

VECPAR’98 - 3rd International Meeting on Vector and Parallel Processing

Comparisons of Parallel Algorithms to Evaluate
Orthogonal Series

Roberto Barrio

GME, Departamento de Matemética Aplicada, CPS,
Univ. Zaragoza, E-50015 Zaragoza. Spain
rabarrio@posta.unizar.es

Abstract. New parallel algorithms for the evaluation of series of orthog-
onal polynomials are presented. The performance of these algorithms on
a message passing distributed memory computer (a Cray T3D) is com-
pared.

1 Introduction

The evaluation of polynomials is one of the most common problems in scientific
computing. Therefore, it has been extensively studied and several algorithms
suitable for paraliel evaluation have been proposed [6,9-11]. All these algorithms
focus their attention on the evaluation of power series.

In several scientific applications polynomials do not appear as power series,
but are written using orthogonal polynomials [1] due to their special features. A
parallel algorithm was presented in [2,3] for the evaluation of Chebyshev series.

In this paper we present two new algorithms for the evaluation of polynomials
written as finite series of orthogonal polynomials. These algorithms are based on
the matrix formulation of the sequential algorithms and afterwards they apply
some techniques used in the parallel solution of tridiagonal [14] and banded
linear systems (5,8, 12]. These algorithms are given in Section 3 and compared
in Section 4 on a Cray T3D.

A sequence of orthogonal polynomials {¢(z)} always satisfies [1] the triple
recurrence relation:

¢, (z) — 0r(z) Gr-1(z) = Br br2(z) =0, 722 (1)

for some functions o,(z) and S,. Sequential algorithms for evaluation of finite
series based on orthogonal polynomials exist and are extensively used, such as
the Clenshaw [4] or Forsythe (7] algorithms.

The Forsythe algorithm (7] is based on a direct application of the three—term
recurrence formula (1) and consists of:

n

3" crér(z) = fal2), (2)

r=0

45

FEUP - Faculdade de Engenharia da Universidade do Porto

where

do(z), o1(z), fi(z) = codo(z) + 1 d1(z),

(br(-T) = O(T(flf) ¢r—1($) + ﬁr ¢r—2($)7 } 9 (3)
r=2....,1M.

fr(x) = fro1(z) + cr & (2),

A further computational algorithm is the Clenshaw algorithm [4,13]. that
permits evaluation of a finite series of orthogonal polynomials by means of the
expression:

n

Z crdr(z) = {co + B292(2)} do(z) + q1 () 1 () (4)

r=0
where

n+1(T) = gn42(z) =0,
(%)

4r(z) = ¢ + ars1(2) Gr41(2) + Bragrez(z), for r=n.... L

2 Parallel Algorithm to Evaluate Finite Series of
Chebyshev Polynomials

The parallel algorithms to evaluate Chebyshev series in [2, 3] are based on the
product rules for the first (7;(x)) and the second kind (U;(x)) Chebyshev poly-

nomials:
Tm+p(z) = 2Ty(x) T(z) - Tm—p(z)»

Um+p(z) = 2Tp(z) Um(z) = Un—p(z)

The parallel Forsythe algorithm to evaluate pl,(z) = >r_, ¢ Tr(z) or plf(z) =
S & Ur(z) can be written, with n = kp — 1, as the following routine [2]:

} for m > p. (6)

STEP I: Processor m (m=20,...,p—1)
to =1
if (p! (x)) then
t1==x
else if (p!!/(z)) then
t; = 2z
end if
fori=2,2p—-1
ti=2xti-1 —ti-2
end
STEP II: Processorm (m=0,...,p—1)
fm = cmitm + Cprmtimip
fori=2k
tv‘,p+m = 2tpf'(71—1)p+m - t('i.—z)p-i-m
fm = fm + Cop+m Lip+m
end)

46

VECPAR’98 - 3rd International Meeting on Vector and Parallel Processing

STEP III: Processor m (m=0,...,p—1)
red_sum_O0{fm, sum)

In the algorithm, the number p is the number of processors and the function
red_sum_0(f,,, sum) stands for a global reduction operation, in this case the
addition of fm, for m =0,....p— 1, and writes the result in the variable sum at
the processor 0. The variable sum gives as output the value of the polynomial.

3 Parallel Algorithms to Evaluate Finite Series of
General Orthogonal Polynomials

The algorithm to evaluate Chebyshev series is based on the product rules for
the Chebyshev polynomials. These rules are very simple in this special case and
permit us to obtain an efficient parallel algorithm. Unfortunately, other kinds
of orthogonal polynomials satisfy very cumbersome product rules. Therefore, in
these cases we must obtain parallel algorithms in a different way:.

First of all, we may remark that for general families of orthogonal polynomials
the coefficients in the recurrence relation (1) may be calculated at the same time
we evaluate the finite series. This process may be done in parallel.

In Table 1 we show (Abramowitz et al., [1]) the coefficients ar(z) and Gy in
the case of the Jacobi polynomials H(a’ﬂ)(z), Gegenbauer polynomials C*(z)i,
Legendre polynomials P;(z) and Chebyshev polynomials of the first T3(z) and
second kind U;(z).

Table 1. Coefficients of the triple recurrence relation for some families of orthogonal

polynomials. o
ar(z) Br
Py g oA atsoh) | (rac DB tats)
' 2r(r+a+f) : rr+a+B)(2r+a+8-2)

(a?-pH@r+a+8-1)
2r(r+oa+B)(2r+a+p3-2)

— —242
CMz) . P 1+ T 242X
T T
Pi(z) xzrr—l _r;l
Ti(x) 2 -1
Ui(x) 2z -1

47

FEUP - Faculdade de Engenharia da Universidade do Porto

3.1 Parallel Clenshaw’s Algorithm

The Clenshaw algorithm (Egs. (4),(5))-can be formulated using matrix notation.
Let C be the matrix

1 -ag =B
1 —as -
C= L =8, . (M
—ag
1
then the Clenshaw algorithm is equivalent to solve the banded upper triangular
linear system Cq = c where ¢ and ¢ are the vectors g’ = (q1,42,...,qn) and
¢T = (c1,¢2,...,¢n) and afterwards to use the relation (4) to obtain the value

of the series.

~ To simplify the notation we suppose that n = kp, being p the number of
processors. To illustrate the algorithm we present the case n = 12 and p = 3,
then the matrix C (7), written as a block matrix, will be

1—a2 -0
1 —a3 -0
1 —oul—-PBs
1 |—os =0
1 — Q6 —,37
1 —ar —fs
C= 1 —ag|—fo
1 |—a9 —fio
1 —a0 —On

1 —a1n =Pz

1 —a12

1

Now, we may use in parallel the Gaussian elimination to diagonalize each
of the diagonal submatrices, that is, we apply the divide and conquer algorithm
(Wang [14]), and we obtain the system CR - ¢ = ¢ where

R
1 al b} a1 °r
1 a2 b2 92 ¢z
1 |ad b}
1{ad b3
1 ay bY :
1 |a?b? . :
cf =) aé bi . g=1 cf = (8)
1|a? 89
1
1
1 :
) :
q12 Cfg

48

VECPAR'98 - 3rd International Meeting on Vector and Parallel Processing

Thus, our problem is to solve a reduced linear system of order 2p (in this

case 6)
1 Jad 83 a\ [
1) b3 o cf
1 a3ty gs cf ;
= 9
1|a? b2 g6 ok (9)
1 g9 of
1 q10 Cf{o
And finally, with the values of g1 and g2, we can evaluate the polynomial
using (4).

Therefore, the complete algorithm consists of:

STEP I: Processor m (m=0,...,p~1)
fori=mk,(m+1)k~1
evaluate(a;+2,8i+3)
end
STEP II: Processor p—1
ct =ecy
e =cp_1 +onc
3 =cpg+PBnct
fori=1,k—-3
et = 2 |
2=+ Op-iC
3 Cn—i-2+ ﬂn—i ct

1

c® =
end
Cg;—l)k+2 = c?
e ke = S+ gy C?
a:‘;:f =0
a;j:% =0
bizi=0
B2l =0
Processor m #p—1
a‘l = —Q(m+1)k+1
a.z = —Bim+k+1 + Amanka’
a® = Bim+1yk @'
bt = —Bms1jk+2
b = a(m+1)k bt
b3 = ﬁ(m—fl)k b

C‘l = Cm+1)k

¢? = Clm+1)k-1 + Qm+1)k c!
A = cmenyk-z + Bimeyk
fori=1.k-3

ol = a2

49

FEUP - Faculdade de Engenharia da Universidade do Porto

2 _ 3 1
a” = 0" + O(m41)k-i &

a® = Bim+1)k—i @

b = b2

b‘.z = b% + a(ms1)k—i 0!
b = Bm+1yk—i b

cl = c?

=+ meryhoi

i

: 1
A = Clma)hmiz2 T Bim+1)k-i €
end
k-2 _ 2
aT 1 a3 2
a,}:n‘ =a® + amr420
-2 _ p2
bln y_ bs 2
b.%_ =b° 4+ Cmk+2a
_ 2
Cnk+2 = ¢

el =3+ ampsac?
STEP III: Processor m (m =0,...,p—1)
communicate_0(ak~2,ak" 1, bE-2 b1 R, R
STEP IV: Processor (
‘ 43 = C@_l)m
4= Cg;~1)k+2
form=p—2,0 step -1
q=cR . —d - e
gr=cl i —ah?a - b %

B =q
Q4 = q2
end

STEP V: Processor 0
sum = (co + f2 g2) ¢o(z) + q1 ¢1(2)

Where the function evaluate(o;,5;) evaluates the values of the coefficients («;,5;)
and communicate_i(var) communicates to processor i the variables var.

In this algorithm we only need the value of the polynomial, that is, we only
need the terms q; and go of the solution of the linear system C ¢ = c¢. For this
reason we only have one communication process.

In the complexity analysis of the algorithm we suppose that the evaluation
of the coefficients o, and #; have a computational complexity T, and T3, and
T.om is the complexity of each communication process. Thus. a simple analysis
of the algorithm gives us its computational complexity.

Proposition 1. The theoretical computational complexity of the parallel Clen-
shaw algorithm is

T, = {%1 (10 + T + T5) + 8p — 19 + Toom.

50

VECPAR'98 - 3rd International Meeting on Vector and Parallel Processing

3.2 Parallel Forsythe’s Algorithm

In the Forsythe algorithm (Egs. (2),(3)), the evaluation of the orthogonal poly-
nomials {¢;} is equivalent to solving the linear system F ¢ = en41. where

1—an _ﬁn ¢n 0

F= gy | 8=) enyl = , (10)
".—al 451 0
1 do do

Afterwards we only need to perform the sum Y ¢r ¢r.

To simplify the notation we suppose that n = kp— 1, where p is the number
of processors. To illustrate the algorithm we present the case n = 11 and p = 3,
then the matrix F (10) will be

1 —an —fu
1 —a10 —Bo
1 ~—ag|—P
1 |~os —fs
1 —a7r =fr
1 —oas 0
F= 1 —as|-0Bs
1 |—asq =0
1 —as —fs

1 —a2 =P

1 —m

1

As before, by using the Gaussian elimination and the divide and conquer algo-
rithm we obtain the system FF.¢ = e?, |, where we write F R using the same
notation as C¥ (8) and

T
6= (611610, ¢0)", efy=1(0,0,...,0,cf cf cf.cf) (11)

Our problem is reduced to solving the linear system of order 6,

1 (l,g bg d)ll 0
1|af b3 — ®10 0
1 ey b3 o7} _| O)
1)af b ¢ | | O (12)
1 ®3 £k
1 02 cf

Then we communicate the solutions to each processor in order to obtain the
values of all the orthogonal polynomials {¢;(x)} by solving the different sub-
systems. Finally, we obtain the value of the polynomial by adding each partial
sum.

51

Thus. the
STEP I:

STEP II:

STEP III:

STEP IV:

FEUP - Faculdade de Engenharia da Universidade do Porto

complete algorithm consists on:

Processor m (m=0,...,p—1)
fori=(p-m-1)k,(p—m)k—-1
evaluate(a;,0;)

end
Processor p— 1

cf=1

Cf =3

B =P

fori=1.k-3

R _ R R
Cit1 = Cip1 T Qit1 €

R _ R
Civn = Bi+2Ci

end
R _ R R
Cll\;_l - Ck_l + ak—] Ck—2
»_'2 _
a1 =0
k-1 _
a,”) = 0
k-2 _
bp_] =0
BI1 =0
Processor-m -1
S rocs p
arln = TQp-m-1)k 0
O = —Bp—m-1)k+1 T Ep—m-1)k+1Om
a(’)n = ﬁ(p—-m—l)k+2 Ay
b = _6(p—m—l)k

1 o_ 0
brzn = Q(p—m~1)k+1 brn
bz, = Bip—m-1)k+2 bm
fori=1,k-3
i+l _ il i
! = At + Qpom-1)ktit1 G

i+2 _
a‘lm1 = .B(pl—m—l)k+i+'2 ap,
+1 _ pit]
b;fn) = b:n + Q(p—m-1)k+i+1 b1m
bi:f = ﬂ(p—m—l)k+i+2 b;n
end
k-1 _ k-1 k-2
Gy, - = Oy T Opem)k—10pp

bt = B+ gy B
Clp-mk—2 =0
R
€(p-m)
Processor m (m =0,...,p—1)
communicate_0(af2, ak~1 bE-2 bh-1, C{;-m)
Processor 0
P = C[}j_‘)
br-1 = 65_1
for j=2,p
ke k-
Pik-2 = _af«_]f DG-1)k-1 — b,;_]f Bli-1)k-2
Gik—1 = ~ap"; Pi—1)k-1 — bpZ; GGi-1)k-2
end

k-1 =0

52

R
k-2 (‘(p—m)k— 1)

VECPAR'98 - 3rd International Meeting on Vector and Parallel Processing

¢-2=0
-1 =
STEP V: Processor 0
communicate_m(¢(p-m-1)k-2, Sp-m~1)k-1)

STEP VI: Processor p—1

Sp—1 = 0
fori=0k-1
¢i = Cf
Sp—1 = Sp-1+ CiPi
end
Processor m #p -1
sm =0
fori=0,k—-1
Glp-m-1k+i = —Bp-m-1)k=1 G =~ P(p-m-1)k=2 b;,
Sm = Sin + Clp—m—1)k+i ¢(p—m—1)k+i
end

STEP VII: Processor m (m=0,...,p—1)
red_sum_0(sm, sum)

As before, a simple analysis of the algorithm gives us its computational com-
plexity.

Proposition 2. The theoretical computational complexity of the parallel Forsythe
algorithm is
T, = [%1 (11 + Ta + Tp) + 6p — 15+ 3 Teom.

This algorithm has a greater computational complexity than the parallel
Clenshaw and also it requires more global communication processes.

4 Numerical Tests

The algorithms presented here have been tested on a Cray T3D at the Edinburgh
Parallel Computing Centre (EPCC), using up to 128-PE with Message Passing
Interface (MPI) as the parallel environment. This computer is hosted by a Cray
Y-MP system. Each T3D PE consists of a DECchip 21064 Alpha processor with
64MDb of memory.

In Figure 1 we present the Speed-up (S, = T1 /Tp. where Ty is the evalu-
ation time using the sequential Clenshaw algorithm) for the parallel Forsythe
algorithm to evaluate finite series of Chebyshev polynomials of the first kind.

In Figures 2 and 3 we show the Speed-up for the parallel Clenshaw algorithm
to evaluate finite series of Jacobi, Gegenbauer and Legendre polynomials, and
in Figures 4 and 5 we show the same for the parallel Forsythe algorithm. The
performance of the parallel Clenshaw algorithm is better than the performance
of the parallel Forsythe algorithm. We observe that the time to evaluate the
coefficients a; and §; of the triple recurrence permits us to obtain good speed-up

53 °

FEUP - Faculdade de Engenharia da Universidade do Porto

results, taking into account that the parallel algorithms to evaluate orthogonal
series have a bigger computational complexity than the sequential ones. In the
case of Chebyshev series the parallel algorithm has the same complexity as the
sequential one but in this case we do not need to evaluate the coeflicients.

In order to see the influence of the communication times in the parallel algo-
rithms, we present in Figures 6,7 and 8 the speed-up without the communication
process. For low degree polynomials we observe that the communication process
takes more time than the evaluation when we have a high number of processors.

3 S 30
- 32 processors
[=% [=% " “
72 N 720 P '
- 3 o
08)_ ‘a(g é" 10 *
. 4 processors _*_*M
10° 10° 10° 10° 10° 10 10° 10°
6 —¥¥ 60
o | 8processors ww o |64 processors
34 il 3 40 o
® *‘f B s
[¥]
g2 §20 o
3 ! -
0 3 4 5 6 0 3 4 5 6
10 10 10 10 10 10 10 10
degree degree

Fig. 1. Speed-up in the parallel evaluation on a CRAY T3D of several Chebyshev
polynomial series using the parallel Forsythe algorithm.

Acknowledgements The author was supported in part by the Spanish Ministe-
rio de Educacién y Ciencia (DGICYT #PB95-0807). The author has performed
some part of the work during a stay at the Edinburgh Parallel Computing Centre
(EPCC), supported by the TRACS programme (Training and Research on Ad-
vanced Computing Systems), reference ERB-FMGE-CT95-0051, Training and
Mobility of Researchers (DG-XII TMR) Programme of the European Commu-
nity.

References

1. Abramowitz, M. and Stegun, I. A.: Handbook of Mathematical Functions. Dover
Publications, Inc., New York (1965).

2. Barrio, R. and Sabadell, F. J.: A parallel algorithm to evaluate Chebyshev series on
a message—passing environment, SIAM J. Sci. Comp. (1998), in press.

3. Barrio, R. and Sabadell, F. J.: Parallel evaluation of Chebyshev and Trigonometric
series, submitted for publication (1998).

4. Clenshaw. C. W.: A note on the summation of Chebyshev series. Math. Tab. Wash.
9 (1955), 118-120.

54

VECPAR’98 - 3rd International Meeting on Vector and Parallel Processing

32 processors

10° 10° 10 10

S 6
8 8 processors 128 processors
Q
3 R
-6
]
2 £
Ay s
10° 10 10° 10°
processors
--0~-- Jacobi
--x-~ Gegenbauer
--A-- Legendre

processors

Fig. 2. Speed-up in the parallel evaluation on a CRAY T3D of several polynomials
using the parallel Clenshaw algorithm.

Degree 10°

Degree 10°

B
[—

0 50 100
processors processors

Degree 108

100

50

speed-up

0 50 100 4] 50 100
processors processors

Fig. 3. Speed-up, depending on the number of processors, in the parallel evaluation
on a CRAY T3D of several polynomials using the parallel Clenshaw algorithm (Jacobi
polynomial series —o-. Gegenbauer polynomial series —X- and Legendre polynomial
series ~A~).

55

FEUP - Faculdade de Engenharia da Universidade do Porto

0 32 processors

processors

[N

=)

> ——0-- Jacobi

8 --x-- Gegenbauer
& --A-- Legendre

processors

Fig. 4. Speed-up in the parallel evaluation on a CRAY T3D of several polynomials
using the parallel Forsythe algorithm.

2 3 40 S
Degree 10 Degree 10
Q
2
5
@
7]
% i —
0.5 " R
0 0
0 50 100 0 50 100
processors processors
10 < 60 =
Degree 10 Degree 10 D

0 50 100
processors

processors

Fig. 5. Speed-up, depending on the number of processors, in the parallel evaluation
on a CRAY T3D of several polynomials using the parallel Forsythe algorithm (Jacobi
polynomial series —o-. Gegenbauer polynomial series —x— and Legendre polynomial

series —A-).

56

VECPAR’98 - 3rd International Meeting on Vector and Parallel Processing

35 30
- 4 processors o | B2Processors i ke
i ¥ T KK S 7 20 *
T 3 *_ L B o
S 10t
7] o« P
25
10° 10* 10° 10° 10° 10* 10° 10°
60
8 processors 64 processors B il
(=% PApreRRss o -
76 o = 3w % * e 7 40 -
3 % 3 o*
[L]
=3 5t , 3 20 ‘**w
¥ o B
4
10° 10* 10° 10° 10° 10 10° 10°
degree degree

Fig. 6. Speed-up, without the communication time, in the parallel evaluation on a
CRAY T3D of several Chebyshev polynomial series.

Q

i

o

§40 x —~~0-- Jacobi

® ” 64 processors ~*~~ Gegenbauer

20
10° 10* 10° 10°
degree degree

Fig. 7. Speed-up, without the communication time, in the parallel evaluation on a
CRAY T3D of several polynomials using the parallel Clenshaw algorithm.

18
a 16
3
é 14
g 12 PN % HeX PO
®10) %2 processors
8
10° 10* 10° 10° 10° 10° 10° 10°
* 40
(=%
S0
el
@ pe MeXFOOMA— K H 208
:‘%’ 20 PN X T Jacobi
o 8 processors " 64 processors ~X~~ Gegenbauer
10° 10* 10° 10° 10° 10 10° 10°
degree degree

Fig. 8. Speed-up, without the communication time. in the parallel evaluation on a
CRAY T3D of several polynomials using the parallel Forsythe algorithm.

57

FEUP - Faculdade de Engenharia da Universidade do Porto

[o1]

Dongarra, J. J. and Johnsson, S. L.: Solving banded systems on a parallel processor,

Parallel Computing 5 (1987), 219-246.

6. Dorn, W. S.: Generalisations of Horner’s rule for polynomial evaluation, IBM J.
Res. Develop. 6 (1962), 239-245. (1962).

7. Forsythe, G. E.: Generation and use of orthogonal polynomials for data fitting with
a digital computer, J. SIAM 5 (1957), 74-88.

8. Johnsson, S. L.: Solving narrow banded systems on ensemble of architectures, ACM
TOMS 11 (1985), 271-288.

9. Kiper, A.: Parallel polynomial evaluation by decoupling algorithm, Parallel Algo-
rithms and Applications 9 (1996), 145-152.

10. Lij, L., Hu, J. and Nakamura, T.: A simple parallel algorithm for polynomial eval-
uation, SIAM J. Sci. Comput. 17 (1996), 260-262.

11. Maruyama, K. : On the parallel evaluation of polynomials, IEEE Trans. Comput.
C-22 (1973), 2-5.

12. Meier, U.: A parallel partition method for solving banded systems of linear equa-
tions, Parallel Computing 2 (1985), 33-43.

13.-Smith, F. J.: An algorithm for summing orthogonal polynomial series and their

" derivatives with applications to curve—fitting and interpolation, Math. Comp. 19

(1965), 33-36.

14. Wang, H. H.: A Parallel Method for Tridiagonal Equations, ACM TOMS 7 (1981),

170-183.

58

VECPAR'98 - 3rd International Meeting on Vector and Parallel Processing

Coarse-grain parallelization of a multi-block
Navier-Stokes solver on a shared memory
parallel vector computer

P. Wijnandts and M.E.S. Vogels

National Aerospace Laboratory NLR, 1059 CM Amsterdam, The Netherlands

Abstract. The coarse-grain, or block-loop parallelization of the multi-
block Navier-Stokes flow solver ENSOLV on a NEC SX-4, a shared mem-
ory parallel vector computer, is discussed. The performance of the paral-
lel code was tested by running the code on ten benchmark cases, provided
by the ENSOLV user group. The performance is measured in terms of
speed-up, memory usage and execution cost. The results of the bench-
mark cases are presented. The results are compared to those of the low-
level DO-loop parallelization implemented earlier. The conclusion based
on the comparison of the results, is that for all benchmark cases, except
the single block, the block-loop parallelization gives better performance
in terms of speed-up. Although block-loop parallelization requires more
memory, it gives overall less execution cost.

1 Introduction

The multi-block Navier-Stokes flow solver ENSOLV (2], [4], computes the solu-
tion of the steady 3D Euler and/or thin-layer Navier-Stokes equations in an
arbitrary flow domain. The Euler and Navier-Stokes equations are given by five
partial differential equations for the conservation of mass, 3D momentum and
energy, extended by the perfect gas law. To solve the equations, an iterative
procedure which resembles time integration is used. A number of techniques are
employed to accelerate the convergence:

1. A multigrid scheme, which performs relaxations on different grid levels, is
used as solution procedure. This accelerates the convergence on the finest
grid level. As relaxation procedure, the explicit Runge-Kutta time stepping
scheme is used; '

2. The evaluation of the time step, needed for the Runge-Kutta scheme, is
performed locally;

3. Implicit residual averaging with varying coefficients and enthalpy damping
are used.

The solver is based on multi-block structured grids. Multigrid is applied
around multi-block, i.e. on each grid level a loop on the blocks is performed.
The Runge-Kutta scheme is applied on a block-by-block basis. This means that
a relaxation of all blocks consists of taking one complete Runge-Kutta time step

59

FEUP - Faculdade de Engenharia da Universidade do Porto

for each block successively, keeping the flow states in the other blocks fixed. The
flow solver ENSOLYV is currently operational at NLR and industry.

Within the NICE! program, ENSOLV is being parallelized in order to reduce
execution cost. Parallelization takes place on a 16-processor NEC SX-4 [9], a
shared memory parallel vector computer, with a peak performance of 2 GFlop/s
per processor. In [5], ten representative benchmark cases were defined by the
ENSOLV user group, which constitute the benchmark for evaluating the par-
allelized version of the ENSOLV code. The performance of the parallel code is
measured in terms of speed-up, memory usage and execution cost. At NLR. ex-
ecution cost are expressed in a single number, so-called System Resource Units
(SRU’s). In the SRU’s, the sum of all CPU-times, the amount of memory used
and the time the memory is occupied, are accounted for; the formula reflects
the cost price of the system elements [1]. Note that the sum of all CPU-times is
always larger when parallelization is applied. If the parallelized code will result
in a reduction in real time, by the same factor as the increase in memory usage,
the SRU’s should stay constant. A detailed explanation of the SRU formula, as
used for the calculations of the SRU’s reported in this document, can be found
in [13].

The Data Parallelism strategy for parallelizing ENSOLV was chosen [8]. With
this strategy, parallelism is obtained by splitting up the DO-loop’s. Splitting up
the DO-loop’s is specifically suited for shared memory computers, such as the
shared memory parallel vector machine NEC SX-4, present at NLR.

There are different levels of DO-loop parallelization, two of which are:

1. Low-level DO-loop parallelization, parallelization of DO-loops in individual
routines. A possible problem is the fine parallel grain size; the work per loop
might not be enough to overcome the parallel overhead. Also, the paralleliza-
tion has to be implemented on many loops in order to achieve an acceptable
parallelization percentage;

2. Block-loop parallelization, parallelization of the DO-loop’s over the blocks in
the domain. This can be considered as high-level DO-loop parallelization. It
results in the largest possible grain size. A possible problem is load imbal-
ance. The ENSOLV code uses a multigrid algorithm, which is implemented
around the multi-block algorithm. The operations of the multigrid algorithm
are relaxation, restriction and prolongation. The routines performing these
operations all contain block-loops. Therefore, this parallelization strategy is
applicable.

Earlier, ENSOLV has been parallelized using the low-level DO-loop paralleliza-
tion strategy. This parallelization is described in [11]. The parallelization resulted
in poor performance in terms of speed-up and execution cost, for most bench-
mark cases. For benchmark cases with a relatively high number of multigrid
levels, combined with many small blocks in the grid, the poor performance was
attributed to the large parallel overhead caused by the very fine grain size. It
was decided that block-loop parallelization would be implemented. In Chapter 2,

! Netherlands Initiative for Computational Fluid Dynamics in Engineering with HPCN

60

VECPAR’98 - 3rd International Meeting on Vector and Parallel Processing

the block-loop parallelization of ENSOLV will be described briefly. Also, the sys-
tem into which the resulting parallel code, along with tools for task estimation,
task allocation and speed-up estimation, was integrated, will be described. In
Chapter 3, the benchmark cases will be described and remarks are made about
the expected performance of the parallel code for these benchmark cases. In
Chapter 4, the results of testing the block-loop parallel ENSOLV code on the
benchmark cases are presented and discussed. In Chapter 5, the final conclusions
are given.

2 The Parallel ENSOLV System

In this section, the block-loop parallelization of ENSOLV is described briefly.
A more extensive description of the parallelization can be found in [13]. The
resulting parallel code was integrated into a system including tools for task
estimation, task allocation and speed-up estimation.

2.1 Block-loop parallelization of ENSOLV

Implementing block-loop parallelization, in stead of low-level DO-loop paral-
lelization, has some consequences that need to be examined:

1. To eliminate the dependency between time integration in the blocks, the
Gauss-Seidel algorithm is replaced with the Jacobi algorithm. This means
that when updating the flow state of one block, the flow states from the
prior Runge-Kutta time step in the adjacent blocks are used, in stead of
the most recent flow states. Implementing a different solution procedure
will generally change both convergence and stability, but should result in
the same final solution. However, in order to allow a fast evaluation of the
block-loop parallelization of ENSOLV, a simplified implementation of the
Jacobi algorithm was used, resulting in a slightly different final solution (in
particular near block interfaces) [3]. Results of the serial ENSOLV code using
this implementation of the Jacobi algorithm, can be found in Tables 5-14;

2. A significant increase in memory usage is unavoidable; computing the blocks
in parallel means that each processor needs its own scratch arrays. For all
benchmark cases, except the single block benchmark case 02, the memory
size is approximately doubled when run on eight processors;

3. Since blocks differ in the number of grid points, the model used, boundary
conditions applied etc., a load balancing problem may occur. Implement-
ing a load balancing, or task allocation tool will improve the load balance
(Section 2.2);

4. The maximum speed-up that can be obtained, is limited to the number of
blocks used, if the number of blocks is less than the number of processors.
Also, if a case has one large block and many small blocks, the maximum
speed-up is limited by the work load of the large block.

61

FEUP - Faculdade de Engenharia da Universidade do Porto

The block-loops were parallelized by splitting these single loops in double
loops; the outer loop over the processors and the inner loop over the blocks as-
signed to that processor by the task allocation tool (Section 2.2). The outer loops
were parallelized by inserting *odir directives, recognizable only to the NEC For-
tran compiler and therefore leading to a portable code. No message passing code
is necessary, since the parallelization takes place on a shared memory computer.
The NEC SX-4 preprocessor now generates the parallel code.

2.2 Integration of parallel ENSOLV

The code was integrated into a system, including tools for task estimation, task
allocation and speed-up estimation. The current work was carried out by oper-
ating this system through a specific working environment, ISNaS [6], where the
calculations can be started by simple drag-and-drop actions.

Task estimation Initially, the work load, or the weight for each block was set
equal to the number of grid points. This is reasonable under the assumption that
the work in a block is proportional only to the number of grid points, and all
blocks are active in all parallel parts of the code. With ENSOLV, this assumption
proved to be incorrect; if two blocks have the same number of grid points, but
not the same ordering of their dimensions in the grid, their work loads can be
different, due to a difference in vectorization performance.

The present task estimation tool performs (at least) one iteration of the
block-loop parallel ENSOLV code, including timing-commands. The work load
for each block is then set equal to the time it spends in the block-loops.

Task allocation In order to improve the load balance, a task allocation tool
was implemented. This task allocation tool is a stand-alone partitioning tool,
based on Ozturan algorithm [7], adapted for shared memory machines [12]. The
algorithm starts from an existing partitioning of the blocks. It then re-locates
blocks until a satisfying (theoretically) load balance is reached, or there is no
more improvement possible.

Speed-up estimation An estimation of the maximal attainable speed-up can
be made following task estimation and task allocation. An approximation of the
parallel part of the code can be obtained by adding the work loads for all blocks.
We can now calculate the maximal attainable speed-up using Amdahl:

f-maxp Wp

S =
gil Wp

+(1-)7 ' (1)

where f equals the fraction representing the parallel part, Np equals the number
of processors and Wp equals the work assigned to processor P.

62

VECPAR'98 - 3rd International Meeting on Vector and Parallel Processing

3 Settings for evaluation of parallel ENSOLV

In this section, the characteristics of the benchmark cases are given. The tools in
the parallel ENSOLV system are used to calculate maximal attainable speed-ups.

3.1 Characteristics of the benchmark cases

For the performance tests on the NEC S5X-4, a set of test problems has been
defined [5]. The characteristics of these benchmark cases can be found in Table 1.
In Fig. 1, the benchmark cases are identified by configuration and number of
blocks.

120 T T
wany WENP
100 | p
a/castores
°
80 b
2 WBIN
£ 60 | e 1
-
. wiB B
40 N
W/BMN
20 F 43
aerofoil
°
w
o W
1 2 3 4 5 [7 8 9 10

benchmark case

Fig. 1. Identification of benchmark cases by conﬁgui’ation and number of blocks

3.2 Maximal attainable speed-ups

In Tables 2 and 3, the task allocations calculated by the task allocation tool,
discussed in Section 2.2, can be found. The work loads for benchmark case 05,
measured by using one iteration only, were relatively small. This can lead to
inaccuracies, e.g. when calculating the fraction f representing the parallel part.
In order to reduce inaccuracies, the calculations for benchmark case 05 were
done for the full 500 iterations. In Table 4, the maximal attainable speed-up
calculated with Equation 1 can be found.

It is expected that only for benchmark case 02, a single block case, the block-
loop parallelization will lead to significantly worse speed-up, compared to low-
level DO-loop parallelization. For all other benchmark cases, block-loop paral-
lelization is expected to lead to an improvement in speed-up (Fig. 2).

63

FEUP - Faculdade de Engenharia da Universidade do Porto

10 T T T T
estimated o
low-isvel +
9r 4
8k
°
° ° °
7+ o
°
°
6k °
g
s
H Mo
2 fequirerment ¥
&
4t E
3 o . ° - N
.
.
2+ 4
1 ° -
1 2 3 4 7 8 9 10

5
testcase

Fig. 2. Speed-up results for eight processors; estimated block-loop versus measured
low-level DO-loop

4 Results

The block-loop parallelization results for all ten benchmark cases, for 1-, 4- and
8-processor runs, are shown in Tables 5-14.
In Tables 5-14, the following definitions are used:

— The Parallelization Overhead is defined as the ratio of the real time needed
by the parallel version run on 1 processor and the real time needed by the
serial version;

— The Speed-up for N processors is defined as the ratio of the real time of the
serial version and the real time of the parallel version run on N processors;

— The Memory Overhead is defined as the ratio of the amount of memory
needed by parallel ENSOLV on N processors and the amount of memory
needed by the serial version.

All rea] time results are timings of the iteration part of the solver, output to the
ENSOLV output file OUT.

In the following sections, the speed-up, memory usage and execution cost
are compared to low-level DO-loop parallelization results. Not all the results of
low-level DO-loop parallelization are listed here, the reader is referred to [11].

4.1 Speed-up results

For all benchmark cases, except the single block benchmark case 02, block-loop
parallelization shows better performance in terms of speed-up, compared to low-
level DO-loop parallelization.

The remaining differences in speed-up estimations and measurements are
attributed to the fact that the task estimation tool uses only one iteration.

64

VECPAR'98 - 3rd International Meeting on Vector and Parallel Processing

For benchmark case 05 the full 500 iterations were used, and the differences
are minimal. The required speed-up of 4.8 for eight processors, defined by the
ENSOLYV user group, is attained by seven of the ten benchmark cases (Fig. 3).

T T
estimated ¢
fow-level +
9r measured O
gl
°
8
7
°
a L o
6 °
c [}
o
3 a
b B 8.
2 requiremen ¥
“ +
s 4
-
° M .
3 + -]
+
+
2 b o
ir + ° B
o
" s

5 6
benchmark case

Fig. 3. Speed-up results for eight processors; measured block-loop versus estimated
block-loop and measured low-level DO-loop

4.2 Memory usage

As expected, the memory usage increases considerably for all benchmark cases,
except the single block benchmark case 02 (Tables 5-14). Of course, the memory
usage does not further increase when the number of processors is larger than
the number of blocks. Benchmark case 10 shows the largest increase in memory
usage. For all benchmark cases, the memory usage was smaller than the maximal
available memory on the NEC SX-4.

4.3 Execution cost

The execution cost for block-loop parallelization are considerably lower for all
benchmark cases, except for the single block benchmark case 02.

For eight of the ten benchmark cases, the cost for the parallel execution of
ENSOLV on eight processors are equal to or less than the cost for serial execution
of ENSOLV (Fig. 4). For the large memory benchmark case 07, the cost of the
parallel runs are considerably lower than the cost of the serial run. This is due
to the construction of the SRU formula [13].

65

FEUP - Faculdade de Engenharia da Universidade do Porto

Y Y T
9F low-level +

measured O
8 4
7}
6 F
° 5F 4
s
4 4
o
3 o 4
.
.
2 + 4
-
.
* +
*] (=]
) o -]) “ o
o
— L o L . " "
1 2 3 7 8 9 10

5 6
benchmark case

Fig. 4. Ratio of execution cost on eight processors and cost of sequential execution;
measured block-loop versus measured low-level DO-loop

5 Conclusions and future work

. Block-loop parallelization has been used for parallelizing the multi-block Navier-
Stokes flow solver ENSOLV. The parallel code was integrated into a system,
including tools for task estimation, task allocation and speed-up estimation.
Future users will be able to operate this system through a specific working
environment, ISNa$ {6], where the calculations can be started by simple drag-
and-drop actions.

The block-loop parallelized code was tested on ten benchmark cases. The
performance was measured in terms of speed-up, memory usage and execution
cost, and compared to the performance of the low-level DO-loop parallelized
code implemented earlier.

All benchmark cases, except the single block benchmark case 02, show better
performance in terms of speed-up compared to low-level DO-loop parallelization.
For seven of the ten benchmark cases, the speed-up for eight processors is higher
than the the user required value of 4.8.

For all benchmark cases, except the single block benchmark case 02, memory
usage increases considerably when using block-loop parallelization in stead of
low-level DO-loop parallelization, as was foreseen.

The block-loop parallelization gives better or comparable performance in
terms of execution cost, than the low-level DO-loop parallelization, for all bench-.
mark cases, except the single block benchmark case 02. For six of the ten bench-
mark cases, the execution cost for parallel runs is lower than or comparable to
the execution cost for the sequential run.

Based on the results, it was decided not to implement a single parallelization
approach, combining both previously applied parallelization strategies; low-level
DO-loop parallelization for larger blocks, block-loop parallelization for several

66

VECPAR'98 - 3rd International Meeting on Vector and Parallel Processing

smaller blocks.

References

10.

11.

12.

13.

Hameetman, G.: Private communications (1997)

Kok, J.C., Boerstoel, J.W., Kassies, A., Spekreijse, S.P.: A robust multi-block
Navier-Stokes flow solver for industrial applications, NLR Technical Publication
TP 96323 L (1996)

. Kok, J.C.: Private communications (1998)
. Kok, J.C.: An industrially applicable solver for compressible, turbulent flows, Ph.D.

thesis, Delft University of Technology (1998)

. Laban, M.: Parallelized ENSOLV User Reguirements, NLR Technical Report TR

96353 L (1996)

Loeve, W., van der Ven, H., Vogels, M.E.S., Baalbergen, E.H.: Network Middelware
illustrated for enterprise enhanced operation, NLR Technical Report TR 97224 L
(1997), in CAPE’97 proceedings v

. Ogturan, C., deCougny, H.L., Shephard, M.S., Flaherty, J.E.: Parallel adaptive

mesh refinement and redistribution on distributed memory computers, Comp. Meth-
ods Appl. Mech. Eng., Vol. 119 (1994) 123-137

. Potma, K., Sukul, A.R.: Preliminary ENFLOW Parallelization for the deﬁm’tion of

o Parallelization Strategy for the NEC SX-4/16, NLR. Technical Report TR 96410
L (1996) '

. Schoenmaker, M.: NLR S$X-4/16 Vector/Parallel Supercomputer,

http://super.nlr.nl:8080/ (1998)

Sukul, A.R.: Preliminary Parallelization Results of ENSOLV on the NEC SX-4,
NLR Technical Report TR 96725 L (1996)

Sukul, A.R.: Predesign of ENSOLV Parallelization on the NEC SX-4, NLR Tech-
nical Report TR 96726 L (1996)

van der Ven, H.: Partitioning and parallel development of an unstructured, adaptive
flow solver on the NEC 5X-4, NLR Technical Publication TP 97329 L (1997)
Wijnandts, P.: Evaluation of block-loop parallelization of ENSOLV on the NEC
SX-4/16, NLR Technical Report TR 97344 L (1997)

67

FEUP - Faculdade de Engenharia da Universidade do Porto

Table 1. Characteristics of the benchmark cases (w=wing, w/b=wing-body,
w/b/n=wing-body-nacelle, w/b/n/p=wing-body-nacelle-pylon, BL=Baldwin-Lomax,
CS=Cebeci-Smith, JK=Johnson-King)

Case|ident Config. 2D /3D Blocks Mcells Multigrid Euler/TLNS Tur. Mod. Iter.
01 |RAE2822 aerofoil 2D 8 0.010 3 TG BL 400
02 |Delta w 3D 1 0.369 3 T(k) BL 200
03 |AS28g w/b/n 3D 62 1.556 2 E - 500
04 |Onera M6 w 3D 4 0.786 4 T(j) CS 80

05 |F16 a/c 3D 57 2.084 1 E - 500
06 |F16 a/c+stores 3D 86 2.084 2 E - 360
07 |{VTP4 w/b 3D 38 6.636 4 T() BL 100
08 |VTP4 w/b/n 3D 105 1.455 3 T(j) JK 100
09 |[Model 10 w/b/n/p 3D 106 2.211 3 T(i,j.k) CS 100
10 |Duprin w/b/n/p 3D 21 0.577 2 E - 100

Table 2. Task allocations for four processors, with Wp equal to the work load of
processor P, the maximum given in bold

case ||01 |02 03 04 05 06 07 08 09 10

W1 {|0.17 {36.20(11.35 |29.76{707.30 |18.19 |110.63 [{42.50 (57.12 (5.25
W, 1|0.16 [0 11.27 |29.69 |715.86 {17.90 {110.90 [42.33 |57.69 |4.64
Wi |[0.17(0 11.30 |17.43 [726.24|17.97 {112.44|42.49 |57.63 |5.34
Wy ||0.11 |0 11.44|17.41 |717.94 {18.21]|111.62 [42.29 |57.48 |4.36
total{|0.61 {36.20 [45.36 {94.29 (2867.34]|72.27 |445.59 |169.61{229.92{19.59

Table 3. Task allocations for eight processors, with Wp equal to the work load of
processor P, the maximum given in bold

case j01 |02 03 |04 05 06 |07 08 09 10

Wi ||0.17|36.20(5.44 129.76|354.89 |9.00 |56.12 |20.50 |28.79 |2.57
W, 10.16 (0 5.49 129.69 {383.449.19 |55.27 |20.31 |29.00|2.70
Wi |]0.07 |0 7.10(17.43 {355.95 |8.96 [54.23 |20.45 |28.89 [2.08
Wy j0.10 [0 5.47 |17.41 |352.33 [8.99 [56.11 (21.13 |28.75 |2.21
Ws 10.03 [0 5.54 |0 353.48 |8.91 [58.24|20.32 |28.61 {2.59
We 110.01 [0 5.46 (0 351.00 [9.07 |54.72 |20.27 |28.54 |2.76
W2 |[0.04]0 541 |0 366.18 19.02 [56.89 |26.00(28.47 (2.49
We 10.03 |0 5.45 |0 350.07 |9.13 ({54.01 |20.63 |28.87 [2.19
total||0.61 |36.20 |45.36/94.29 |2867.34|72.27|445.59|169.61{229.92]{19.59

68

VECPAR'98 - 3rd International Meeting on Vector and Parallel Processing

Table 4. Maximal attainable speed-ups for four and eight processors, with f the

fraction representing the parallel part of the code

case||01 02 03 04 05 06 07 08 09 10

F 1/0.9394(0.9981]0.9908|0.9890|0.9949|0.9922 0.9932(0.9957(0.9962{0.9894
Sy 113.08 [1.00 {3.86 [3.09 [3.89 [3.88 [3.88 [3.94 3.94 3.57
Se 113.22 [1.00 16.09 [3.09 |7.24 |7.47 |7.32 [6.37 7.73 [6.67

Table 5. Parallel performance for case 01, 400 iterations

#processors|sequential execution|parallel [speed-up MFLOPS|memory|memory |[SRU
or (real) overhead usage overhead
parailel time (MB)

1 sequential {118 - 1.00 237 24 - 1475

1 parallel 124 1.05 0.85 226 25 1.04 1553

4 porallel 52 - 2.27 533 40 1.67 2548

8 parallel 55 - 2.15 508 54 2.25 5266

Table 6. Parallel performance for case 02, 200 iterations

#p [ial Pparallel |speed-up[MFLOPS|memory|memory SRU
or (real) overhead usage overhead
parallel |time (MB)

1 sequential |717 - 1.00 485 195 - 11287

1 parallel 865 1.21 0.83 436 212 1.09 12121

4 parallel 712 - 1.01 484 203 1.04 14052

5 parallel 962 - 0.75 364 212 1.09 33396

Table 7. Parallel performance for case 03, 500 iterations

#processors|sequential{execution parallel |speed-up| MFLOPS|memory memory SRU
or (real) overhead usage overhead
paraliel time (MB)

1 sequential [2256 - 1.00 666 249 38296

1 paralle! 2327 1.03 0.97 652 266 1.07 34873

4 parallel 603 - 3.74 2488 376 1.51 33385

8 parallel 456 - 4.95 3291 465 1.87 35373

Table 8. Parallel performance for case 04, 80 iterations

T seq ial i parallel [speed-up MFLOPS|memory|memory
or {real) overhead usage overhead
paraliel time (MB)

1 sequentinl |753 - 1.00 436 208 -

1 parallel 760 1.01 0.99 433 208 1.00

4 parallel 250 - 3.01 1307 398 1.91

5 porallel 248 - 3.04 1324 406 1.95

69

FEUP - Faculdade de Engenharia da Universidade do Porto

Table 9. Parallel performance for case 05, 500 iterations

#processors|sequential|execution|parallel [spesd-up|MFLOPS|memory{memory SRU
or (real) overhead usage overhead
parallel {time (MB)

1 eguential [2873 - 1.00 644 241 - 48331

1 parallel 2882 1.00 1.00 643 241 1.00 48412

4 parallel 768 - 3.74 2402 357 1.48 40759

8 parallel 405 - 7.09 4541 502 2.08 40594

Table 10. Parallel performance for case 06, 360 iterations

#processors|sequential|execution|parailel |spesd-up|MFLOPS|memory|memory SRU
or (real) overhead usage overhead
parallel time (MB)

1 sequential [2600 - 1.00 618 282 - 45689

1 parallel 2648 1.02 0.98 608 300 1.06 40254

4 parallel 684 - 3.80 2324 434 1.54 38595

8 parallel 443 - 5.87 3584 584 2.07 39109

Table 11. Parallel performance for case 07, 100 iterations

#processors |sequential|execution|parallel [speed-up{MFLOPS|memory|memory SRU
or (real) overhead usage overhead
parallel [time (MB)

1 sequential }4430 - 1.00 621 859 - 129283

1 parallel 4593 1.04 0.96 617 859 1.00 130170

4 parallel 1270 - 3.49 2161 1555 1.81 91093

8 parallel 717 - 6.18 3825 1944 2.26 82421

Table 12. Parallel performance for case 08, 100 iterations

Fprocessors|sequential|execution|parallel |speed-up| MFLOPS|memory|memory [SRU
or (real) overhead usage |overhead
parallel [time (MB)

1 sequential {1676 - 1.00 375 211 - 27197

1 parallel 1752 1.05 0.96 362 228 1.08 25539

4 parallel 560 - 2.99 1117 281 1.33 24390

8 parallel 325 - 5.16 1923 346 1.64 26005

70

VECPAR'98 - 3rd International Meeting on Vector and Parallel Processing

Table 13. Parallel performance for case 09, 100 iterations

#processors[sequential execution|parallel [speed-up MFLOPS|memory|[memory |SRU
or (real) overhead usage overhead
parallel time (MB)

1 sequential |2294 - 1.00 395 285 - 40452

1 parallel 2326 1.01 0.99 389 302 1.06 35627

4 parallel 681 - 3.37 1320 357 1.25 33209

8 parallel 396 - 5.79 2269 438 1.53 33046

Table 14. Parallel performance for case 10, 100 iterations

#processors|sequentiallexecution paralle]l [speed-up MFLOPS |memory|memory |[SRU
or (real) overhend usage overhead
paralliel |time (MB)

1 sequential [198 - 1.00 570 104 - 2784

1 parallel 195 0.98 1.02 571 104 1.00 2776

4 parallel 64 - 3.09 1715 183 1.76 3028

8 parailel 31 - 6.39 3487 249 2.39 3135

This article was processed using the BTEX macro package with LLN CS style

71

FEUP - Faculdade de Engenharia da Universidade do Porto

72

VECPAR’98 - 3rd International Meeting on Vector and Parallel Processing

Using Synthetic Workloads for
Parallel Task Scheduling Improvement Analysis

Jodo Paulo Kitajima® and Stella Porto®

! Departamento de Ciéncia da Computagdo
Universidade Federal de Minas Gerais
Caixa Postal 702 30123-970 Belo Horizonte - MG Brazil
kita@dcc.ufmg.br
2 Computacdo Aplicada e Automagao
Universidade Federal Fluminense
Rua Passo da Pétria 156 24210-240 Niterdi - RJ Brazil
stella@caa.uff.br

Abstract. This paper presents an experimental validation of makespan
improvements of two scheduling algorithms: a greedy construction algo-
rithm and a tabu search based algorithm. Synthetic parallel executions
were performed using the scheduled graph costs. These synthetic execu-
tions were performed on a real parallel machine (IBM SP). The estimated
and observed response times improvements are very similar, representing
the low impact of system overhead on makespan improvement estimation.
This guarantees a reliable cost function for static scheduling algorithms
and confirms the actual better results of the tabu search metaheuristic
applied to scheduling problems.

1 Introduction

Parallel applications with regular and well-known behavior, where task execution
time estimates are fairly reliable, are suited to static task scheduling (in opposi-
tion to dynamic scheduling, performed during the execution of the application).
This is the case of a great majority of scientific applications. For these applica-
tions, the static scheduling algorithm is executed once, before the execution of
the parallel program, which is then actually run several times according to the
previously obtained schedule. Consequently, even if the scheduling algorithm is a
costly procedure, this cost will be amortized throughout the numerous executions
of the parallel application, i.e. the obtained schedule is re-applied repeatedly.
Static task scheduling is, thus, performed based on estimated data about
the parallel application and the system architecture. Therefore, realistic perfor-
mance evaluation of a task scheduling algorithm can only be fully accomplished
if practical results are also considered. In this sense, the present work analyzes
the quality of greedy and tabu search task scheduling algorithms comparing esti-
mated deterministic results with the actual observed makespan of several parallel
synthetic applications executing on real heterogeneous parallel machines follow-
ing the static schedule previously determined. The following section presents the

73

FEUP - Faculdade de Engenharia da Universidade do Porto

schedule system model. In Section 3, both the greedy and tabu search algorithms
are described. In Section 4, we report the overall experimentation, including: (i)
a description of the testing platform and problem instances considered during
the testing phase; (ii) the most significant numerical results, and (iii) the com-
parative solution quality analysis according to different parameters. Section 5
presents some brief concluding remarks.

2 The Scheduling Model

A parallel application IT with a set of n tasks T = {t;,---,t,} and a heteroge-
neous multiprocessor system composed by a set of m interconnected processors
P = {p1,--,pm} can be represented by a task precedence graph G(II) and an
n X m matrix u, where ux; = p(tk,p;) is the estimated execution time of a task
ty € T at processor p; € P. Each processor can run one task at a time, all
tasks can be executed by any processor, and processors are said to be uniform
in the sense that LL':‘L = %@-,Vt,‘.,t, € T,Vp;,p; € P. This implies that processors
may be ranked accérding‘to their processing speeds. In a framework with one
single faster (heterogeneous) processor, the heterogeneity may be expressed by
a unique parameter called processor power ratio, PPR, which is the ratio be-
tween the processing speed of the fastest processor and that of the remaining
ones (those in the subset of homogeneous processors). Thus, an instance of our
scheduling problem is characterized by the workload and parallel system models.
Given a solution s for the scheduling problem, a processor assignment func-
tion is designed as the mapping A, : T — P. A task t; is said to be assigned
to processor p; € P in solution s if As(tx) = p;. The task scheduling problem
can then be formulated as the search for an optimal assignment of the set of
tasks onto that of the processors, in terms of the makespan c(s) of the parallel
application (cost of the solution s), i.e. the completion time of the last task being
executed. At the end of the scheduling process, each processor ends up with an
ordered list of tasks that will run on it as soon as they become executable.

3 Heuristic Task Scheduling Algorithms

We consider two algorithms in this work, namely: a greedy algorithm called
DES+ MFT and a parallel tabu search algorithm, here referred as TSpar. Al-
though both of them are heuristic, they present different fundamental charac-
teristics. The former is a construction algorithm, which iteratively assigns tasks
to processors based on heuristic criteria, taking into account the static infor-
mation of the system model. On the other hand, the TSpar is a synchronous
parallel implementation of a tabu search metaheuristic algorithm, which guides
an aggressive local search procedure over the task scheduling solution space.

3.1 The DES+MFT Greedy Algorithm

DES+MFT stands for Deterministic Ezecution Simulation with Minimum Finish
Time [4]. This algorithm iteratively schedules tasks in a partial order according

74

VECPAR’98 - 3rd International Meeting on Vector and Parallel Processing

to the simulated execution of the parallel application (DES), based on the esti-
mated task execution times, while scheduling decisions are made according to the
minimum finishing time (MFT) for each “schedulable” task. Figure 1 describes
the DES+MFT in a procedural scheme. In this scheme, the clock variable mea-
sures the evolution of the execution. At the end of this procedure, c(s) = clock
is the cost of the obtained solution, i.e., the makespan of the parallel applica-
tion when submitted to the DES+MFT processor assignment. At each iteration,
certain tasks are scheduled to processors, building an ordered list of tasks as-
sociated to each processor. This is the actual execution order if tasks were to
be executed in an ideal system with estimated execution times. During this de-
terministic execution simulation, each task tx € T assumes one of the following
states at each time instant: non-ezecutable, ezecutable, executing, ezecuted. At
the same time, each processor p; € P .alternates between two different states:
free and busy. A processor p; is said to be busy if it has a task in the ezecuting
state allocated to it.

It should be noticed that DES+MFT, like most greedy algorithms, does not
come back to re-evaluate the scheduling decisions taken in previous iterations.
This means that besides the “look-ahead” feature, it is not capable of making
changes in scheduling decisions made in previous iterations, which were based on
snapshots of the simulated execution. Consequently, these scheduling decisions
depend on how strongly tasks are tied through precedence relations, because they
determine the order in which tasks may possibly be scheduled. Differently, the
TSpar algorithm, departing from the initial solution obtained by the DES+MFT
algorithm, evaluates many other possible assignments, which eventually improve
the makespan of the parallel application, as we can see in the following section.

3.2 The Parallel Tabu Search Algorithm

To describe the TSpar algorithm, we first consider a general combinatorial op-
timization problem (P) formulated as to

minimize ¢(s)
subject to s € S,

where S is a discrete set of feasible solutions. Local search approaches for solving
problem (P) are based on search procedures in the solution space S starting from
an initial solution so € S. At each iteration, a heuristic is used to obtain a new
solution s’ in the neighborhood N(s) of the current solution s, through slight
changes in s. A move is an atomic change which transforms the current solution,
s. into one of its neighbors, say 3. Thus, movevalue = ¢(3) —c(s) is the difference
between the value of the cost function after the move, ¢(), and the value of the
cost function before the move, ¢(s). Every feasible solution § € N(s) is evaluated
according to the cost function c¢(.), which is eventually optimized. The current
solution moves smoothly towards better neighbor solutions, enhancing the best,
obtained solution s*. :

Tabu search [1,2] may be described as a higher level heuristic for solving min-
imization problems, designed to guide other hill-descending heuristics in order

75

FEUP - Faculdade de Engenharia da Universidade do Porto

DES+MFT algorithm
begin
clock + 0
state(p;) + free Vp; € P
start(ty), finish(te) < 0V, €T
while (3t; € T | state(ti) # executed) do
begin
for (each tx € T | state(tx) = executable and p; € P) do
obtain the pair (#;,p:) with the minimum finish time
if (state(p;) = free) then

begin
state(t;) « executing
As(t) =pi

state(p;) « busy
start(t;) < clock
finish(t;) < start(t;) + p(ti, p:)
end
Let ¢ be such that finish(t:) = mintkETlstate(tk)=executing{fi”i5h‘(tk)}
clock « finish(t;) '
for (each t; € T | state(ty) = executing and finish(t)) = clock) do
begin | ’
state(ty) < executed
state(As(ty)) « free
end
end
¢(s) + clock
end

Fig. 1. DES+MFT algorithm description.

to escape from local optima. Thus, tabu search is an adaptive search technique
that aims to intelligently exploring the solution space in search of good, hopefully
optimal, solutions. The learning capability determines that tabu search supplies
richer knowledge about the instance of the problem to be solved than that gen-
erated in other iterative algorithms. In the case of the task scheduling problem
considered in this paper, the cost of a solution is given by its makespan, i.e..
the overall execution time of the parallel application. The neighborhood N(s)
of the current solution s is the set of all solutions differing from it by only a
single assignment. If § € N(s), then there is only one task t; € T for which
Aq(t;) # As(t;). Each move may be characterized by a simple representation
given by (As(t:), i, p1), as far as the position task t; will occupy in the task list
of processor p; is uniquely defined. If the best move takes the current solution
s to a best neighbor solution s’ degenerating its cost function, i.e. ¢(s') > (s},
then the reverse move must be prohibited during a certain number of iterations
(tabu tenure) in order to avoid cycling. However, there are situations in which a

76

VECPAR'98 - 3rd International Meeting on Vector and Parallel Processing

recently prohibited move, if applied after some iterations, will provide a better
solution than the best one found by the algorithm so far, despite its prohibited
status. In these cases, an aspiration criterion is used to override this prohibi-
tion, enabling the move to be executed. In [6] and [7] the reader will find more
detailed description of the tabu search algorithm.

The promising results obtained through parallelization led to the possibil-
ity of more effectively evaluating solution quality of the proposed tabu search
task scheduling algorithm using a parallel implementation. Considering both se-
quential and parallel implementation, solution quality was analyzed according to
different parameters and strategies, which needed to fully specify the tabu search
algorithm with a certain variety of application model parameters (such as task
graph structures, number of tasks, serial fraction and task service demands)
and system configurations (such as number of processors and architecture het-
erogeneity measured by the processor power ratio). It was shown that the tabu
search algorithm obtained better results, i.e. shorter completion times for parallel
applications, improving up to 40% the makespan obtained by the DES+MFT
algorithm, which in fact is the most appropriate greedy algorithm previously
published in the literature [6,8]. We have used the MS-MP parallel version to
carry out the experimentation reported here, because it has demonstrated the
best speedup results in most of the studied cases (7.

4 Experimental Results

In this section, we depict some experimental results obtained from the execution
of synthetic parallel programs scheduled with both the greedy and tabu search al-
gorithms. We first present some results derived from the estimated improvement
analysis of tabu search schedules over those generated by the DES+MFT, which
is the initial solution for the tabu search algorithm. The performance criterium
is the makespan (solution cost) estimated by both algorithms. In the following,
we describe ANDES [3], a framework for performance evaluation using parallel
program models and synthetic programs. Finally, using this framework, we com-
pare execution times of synthetic parallel programs scheduled by DES+MFT
and TSpar algorithms.

4.1 Estimated Performance Analysis

DES+MFT and TSpar scheduling algorithms were implemented using ANSI
C and PVM (Parallel Virtual Machine) [9]. The schedule quality is estimated
based on the computed makespan. In other words, the makespan represents the
schedule cost, ¢(.), which is to be minimized.

One of the main goals is to achieve makespan reduction when changing from
the schedule produced by DES+MFT to the one produced by TSpar. Thus.
solution quality is measured by relative cost reduction, R, computed as

_ ¢(s0) = c(s*)
k= c(so)

77

FEUP - Faculdade de Engenharia da Universidade do Porto

where so is the initial solution obtained by the greedy algorithm DES+MFT
and s* is the best solution found by the TSpar algorithm.

In [6], relative cost reduction values of up to 30% were obtained considering
applications modeled by diamond-shaped precedence graphs. In [8], new results
were presented considering other structures for the parallel applications. Part of
the ANDES benchmark was then used: other types of diamond-shaped graphs
(Diamond3 and Diamond4), iterative graphs (FFT and PDE2), divide-and-conquer
strategies (Divcong), typical matrix computation structures (Gauss), and mas-
ter-slave models (MS3). We can summarize the following results of these above
experiments:

— A parallel application is said to be serialized by a certain processor assign-
ment algorithm when all of its tasks are scheduled to one unique processor.
When the serial fraction (F,) and/or the processor power ratio (PPR) are
very high, the best solution is usually obtained through the serialization of
the application over the heterogeneous processor, which has greater process-
ing capacity. This seems to be clear if we imagine two extreme cases: F.=1
or PPR — oo. In the first case, we face a totally serial application, which
must be executed on the heterogeneous processor (F, corresponds to the
serial fraction defined as the fraction of the total parallel execution time
when just one task is executing even if infinite processors were available).
In the latter case, the heterogeneous processor is able to execute any task
in infinitesimal time, consequently serialization determines again the best
performance. ,

In certain circumstances, serialization will be performed by the DES+MFT
algorithm, when there is still available parallelism to be explored in the par-
allel application. In these cases, the tabu search algorithm will start from a
serialized initial schedule, and more easily will be capable of finding different
assignments which greatly reduce the overall makespan of the application,
augmenting the relative cost reduction.

For very low and very high PPR values low or null makespan improvements
are obtained. A low PPR value means low heterogeneity degree, and, in
this case, the greedy algorithm improvements are sufficient (it is suitable for

" homogeneous configurations). On the other end of the heterogeneity range,
very high PPR values mean that serialization on the very fast processor is
the best solution. In these cases both the DES+MFT and TSpar algorithms
are able of serializing the application, so makespan improvements are not
observed;

— Between the two extremes of the PPR value range, we find a mountain-like
peak of improvements, culminating with a PPR that gives the best relative
performance achieved by the TSpar algorithm. This point is referred as the
PPRpeqar. point. The PPRy.q; point is highly dependent on the shape of
the input task graph. Groups of similar task graphs have a similar behavior.
For example, diamond-shaped graphs present a low PPRp..; (around 5).
On the other hand. iterative graphs produce a more smooth improvement

78

VECPAR'98 - 3rd International Meeting on Vector and Parallel Processing

curve, with higher PPRycqx (around 20 or 30), depending on the size of the
task graph;

— Not only the structure of the task graph is critical in the relative quality
improvement analysis. The number of processors available for scheduling as-
signments influence the results. The relationship between solution quality
improvements and the number of processors is variable depending on the
structure of the task graph. On one hand, the greater the number of pro-
cessors we have, the less heterogeneous the system becomes and thus lower
relative cost reduction is achieved. However, a greater number of processors
also represents more available parallelism and therefore a greater number of
different scheduling possibilities arise.

~ Figure 3 presents some estimated relative cost reduction values computed
between DES+MFET and TSpar algorithms. In (8], Porto et al. measured im-
provements for discrete values of PPR (2, 5,10, 20, ..., depending on the input).
Figure 2 presents a more detailed experiment, with a fine variation of PPR values
and number of processors, considering the Diamond3 benchmark with 66 tasks.

Relative Reduction for Diamond3 with 66 tasks

45 T T T T T T T -
' i m=2 —e—
40 =
m=6 -8
35 | Cm=8 x|
m=10 -+--
m=]2 -x--
30 ih=14 o T

m=16 -+~

Relative Reduction (in percentage)

0 5 10 15 20 25 30 35 40 45 50
PPR

Fig. 2. Detailed relative cost reduction R versus PPR for Diamond3 graph (m corre-
sponds to the number of processors to which the tasks are scheduled).

4.2 The Experimental Framework

The ANDES Environment - ANDES [8] is a PVM-based parallel tool that
supports performance evaluation of parallel programs at the prediction level.

79

FEUP - Faculdade de Engenharia da Universidade do Porto

ANDES considers the existing complex overheads of parallel computers. This
is achieved through the use of synthetic parallel ezecutions directly on the par-
allel machine. In a synthetic parallel execution, the resources of the parallel
computer are used in a controlled way, but no code is generated. All the steps
from the interpretation of the parallel program graph-based and of the paral-
lel machine models to the synthetic execution on the target parallel machine
are automatically managed by ANDES. ANDES finally computes performance
metrics along the execution of that workload implemented according to mapping
and/or scheduling strategies. Synthetic execution was chosen as the performance
technique due to the easy control of parameters as well as the possibility of using
a real envionment. The idea is to conjugate the best of model-based approaches
with the best of realistic parallel executions. ANDES has been used to refine
analytical and simulation analysis. With the current high availability of parallel
systems, the results of ANDES have been proved to be precise and useful.

The Parallel System - ANDES along with the synthetic parallel programs
were executed on an IBM SP multicomputer composed of 32 RS6000 RISC
microprocessors with 64 megabytes of RAM. The processors are interconnected
by a high-speed switch (bidirectional with nominal speed of 80 megabytes per
second).

The Benchmarks - In order to compare estimated and observed improvements
of the overall execution times of real parallel synthetic programs, we have used
the following benchmark (part of the ANDES package): (i) Diamond3 with 66
tasks: (ii) FFT with 194 tasks; (iii)Gauss with 192 tasks; and (iv) Divconq with
46 tasks.

This benchmark picks representative task graphs from the ones studied in
[8]. Small and larger task graphs are used. The TSpar was executed using 4
processors of the IBM SP. The estimated quality of both TSpar and DES+MFT
algorithms is computed using a conventional C procedure for computing the
makespan of the task graphs, detailed in Figure 4 (very similar to the DES+
MFT description). The final value of clock is the actual makespan. Each graph
of the benchmark is scheduled to 2, 4, 8, and 16 processors.

The generated schedules are read by ANDES which generates the synthetic
load to be interpreted by ANDES-Synth, the synthetic execution kernel. Syn-
thetic loads are then executed according to the given schedules.

In order to simulate heterogeneity, the size of synthetic loops corresponding
to tasks allocated to the faster processor are reduced by a factor corresponding
to the PPR itself. Thus, a PPR of 2 means that loops to be executed on the het-
erogeneous processor are reduced by half. The scheduling algorithms consider
communications with zero overhead. This corresponds in ANDES to commu-
nications of a single byte (in the IBM SP machine, such message transmitted
through the switch determines a latency of around 47.03 microseconds [5]).

Preliminary experiments were performed on an idle machine. The standard
deviation was always under 1% for 10 consecutive executions. Considering this
low degree of variability, we have performed measures using a sample of size 5.

80

VECPAR’98 - 3rd International Meeting on Vector and Parallel Processing

4.3 Results and Analysis

Figures 5, 6, 7, and 8 present, in the same graphic, estimated and measured
relative cost reduction values. The chosen PPR value range includes, for all
graphics, the higher relative cost reduction values achieved by TSpar. Differences
between estimated and observed improvements are under 5% for all experiments.

Our results demonstrated by the similarity between estimated and observed
relative cost reduction values that the makespan computation used in both
scheduling algorithms is in fact reliable. This computation is completely de-
terministic. On the other hand, the observed execution times are definitely non-
deterministic due to the overhead from the operating system and the communi-
cation subsystem. However, the execution times presented very low variability.
Therefore, this overhead does not influence significantly the experimental execu-
tion times, i.e. the makespan algorithm shows itself to be very useful to the static
scheduling decisions based on estimated data. Although intuitive, this conclusion
is not obvious and experiments were necessary to validate it.

Taking into account a precise makespan computation, one important con-
sequence is that tabu search improvements are real and significant. This was
foreseen from previous work, based on the estimated relative cost reduction val-
ues between DES+MFT and TSpar algorithms. In this paper, we demonstrate
that these improvements also occur in more realistic execution environments.

Another interesting result is that the PPRpeqk is not always the same. As a
matter of fact, there is a range of PPR values where the best relative cost reduc-
tion varies. This irregular behavior occurs due to the irregular search through
the solution space performed by the tabu search algorithm, which depends on
different heuristic parameters such as tabu list size, number of iterations with-
out improvements, and aspiration criteria. Metaheuristics, such as tabu search,
frequently depend on a fine tuning stage, where parameters are tested and cali-
brated. After this step, they remain unchanged, and in some test cases they are
not always set to achieve the best results.

Finally, ANDES has been proven to be a useful tool in the validation of
scheduling algorithms. The direct combination of both scheduling algorithms
and the synthetic execution runtime system provided an environment where
response time measurements could be quickly obtained.

5 Final Rgmarks

This paper presents an experimental validation of makespan improvements of
two scheduling algorithms: a greedy construction algorithm and a tabu search
based algorithm. Synthetic parallel executions were performed given data on
task execution times, task precedence relations, and task scheduling. These syn-
thetic executions were performed on a real parallel machine (IBM SP). The esti-
mated and observed response times improvements are very similar, representing
the low impact of system overhead on makespan improvement estimation. This
guarantees a reliable cost function for static scheduling algorithms and confirms

81

FEUP - Faculdade de Engenharia da Universidade do Porto

the actual better results of the tabu search metaheuristic applied to scheduling
problems. - -

References

1. F. GLover and M. LAGUNA, “Tabu Search”, Chapter 3 in Modern Heuristic Tech-
niques for Combinatorial Problems (C.R. Reeves, ed.), 70-150, Blackwell Scientific
Publications, Oxford, 1992.

2. F. GLOVER, E. TAILLARD, and D. DE WERRA, A User’s Guide to Tabu Search”,
Annals of Operations Research 41 (1993), 3-28.

3. J.P. KitaJiMa, B. PLATEAU, P.BOUVRY, and D. TRYSTRAM, “A method and a
tool for performance evaluation. A case study: Evaluating mapping strategies”,
Proceedings of the 1994 Cray Users Group Meeting. Tours, 1994.

4. D.A. MENASCE and S.C.S. PORTO, “Processor Assignment in Heterogeneous Par-
allel Architectures”, Proceedings of the IEEE Iniernational Parallel Processing
Symposium, 186-191, Beverly Hills, 1992.

‘5. J. MIGUEL, A. ARRUABARRENA, R. BEIVIDE, and J. A. GREGORIO, “Assessing
the performance of the new IBM SP2 communication subsystem”, IEEE Parallel
& Distributed Technology 4(1996), 12-22.

6. S.C.S. Porro and C.C. RIBEIRO, “A Tabu Search Approach to Task Scheduling on
Heterogeneous Processors under Precedence Constraints”, International Journal of
High-Speed Computing 7 (1995), 45-71.

7. S.C.S.”Porto and C.C. RIBEIRO, “Parallel Tabu Search Message-Passing Svn-
chronous Strategies for Task Scheduling under Precedence Constraints”, Journal
of Heuristics 1 (1996), 207-233.

8. S.C.S. Porro, J.P.W. KiTAJIMA, and C.C. RIBEIRO, “Performance Evaluation
of a Paralle] Tabu Search Scheduling Algorithm”, Solving Combinatorial Prob-
lems in Parallel (joint workshop with the International Parallel Processing Sym-
posium’97), April 1-5 1997, Geneva.

9. V. S. SUNDERAM, G. A. GEIST, J. DONGARRA, and R. MANCHEK, “The PVM
concurrent computing system: evolution, experiences, and trends”, Parallel Com-
puting 20(1994), 531-546.

82

VECPAR'98 - 3rd International Meeting on Vector and Parallel Processing

Diamond3 - Size 1 Diamond3 - Size 2
e e, (O MR2 e Om=2
Om=d || 24 Om=4
: is
Sjom=k || g% 20 Dm=X
ameto|] 3 Bun=l0
Bm=32 v =32
h 2 s 1] 20
PPR PPR
Diveong - Size 1 Diveonq - Size 2
- |0 m=2
H Om=4 [| ., g Om=4
3 35
: o i3 Omet
D@m= w3 i {Em=16
Wm=32 Bm=32
Om=2 Om=2
Omed || & { O m=4
=R E § On=X
Clamel6|| v E Bim=16
Bin=32 W m=32

Gauss - Size 2
Om=2
One=4 L &
35
Om=k || 2 H
2 * %
o
|m=32 ;
N~ v o =2 3 2
E & =8 F
PPR
MS3 - Size 2
Wl On=2 . (Om=2 iJ
x & D=4 ; Om=d4 :l
E-’E'—’“‘ s lOm=R Om=R l!
o F iBm=l6 Bm:l(\li
ol A o=l
~ . = = = (] v, = = =1 H
= 5 5 = & = i
PPR PPR |
4

Fig. 3. Relative cost reduction R versus PPR for two different sizes of Diamond3,
Divecong, FFT, Gauss, and MS3 graphs (m corresponds to the number of processors to
which the tasks are scheduled).

83

FEUP - Faculdade de Engenharia da Universidade do Porto

makespan computation algorithm
begin :
Let s = (As(t1),...,As(tn)) be a feasible solution for the scheduling problem, i.e.,
for every k = 1,...,n, As(tx) = p; for some p; € P
clock « 0
state(p;) + free Vp; € P
start(ty), finish(ty) < 0Vt €T
while (3t € T | state(ti) # executed) do
begin
for (each t, € T | state(ty) = executable) do
if (state(As(tr)) = free) then
begin
state(ty) + executing
state(Aq(tx)) « busy
start(ty) < clock
finish(tx) < start(ty) + p(te, As(te))
end
Let i be such that finish(t;) = min, .7 szm(tk)=executing{fi"i5h(tk)}
clock + finish(ti)
for (each t, € T | state(ty) = executing and finish(tr) = clock) do
begin '
state(ty) < executed
state(As(tr)) « free
end
end
c(s) + clock
end

Fig. 4. Computation of the makespan of a given schedule.

84

VECPAR’98 - 3rd International Meeting on Vector and Parallel Processing

50 T : : . ‘
m=2 (obs) ——
m=2 (est) -+
m=4 (obs) B

! 4 r m=d(est) - %
g m=8 (obs) -4--
E m=8 (est) -=--
E m=16 (obs) - -
: 30 r “{?‘6.(3.5‘) e
=

£

51

=

3 20 |
4

2

.E.;

& 10t |

0 N . i) ;

0 2 4 6 8 10 12

PPR

Fig. 5. Estimated (est) and observed (obs) relative cost reduction R versus PPR for
Diamond3 graph (m corresponds to the number of processors on which the tasks are
scheduled).

50 1 T T T T T T T
m=2 (obs) ~—
m=2 (est) -+
)) m=4 (obs) e
A0 b o e e e =4 -(est) ~x=
’ . m=8 (obs) -4--

m=8 (est) -*--

m=16 (obs) o~

wh e o m=l6esn

20 r

Relative Reduction (in percentage)

24 26 28 30 32 34 36 3® 40
PPR -

Fig. 6. Estimated (est) and observed (obs) relative cost reduction R versus PPR

for FFT graph (m corresponds to the number of processors on which the tasks are
scheduled).

85

FEUP - Faculdade de Engenharia da Universidade do Porto

50 T T T T T T T T
' ’ : m=2 (obs) ——
m=2 {est) -+---
m=4 (obs) -e---
40+ - " . R B e m=4(est) x:
m=8 (obs) -4--

m=8 (est) -*--
m=16 (obs) o~
m=16 (est) -+~ |

30

20 r

Relative Reduction (in percentage)

(=
b

4 6 8 10 12 14 16 18 20
PPR

Fig. 7. Estimated (est) and observed (obs) relative cost reduction R versus PPR for
Divconq graph (m corresponds to the number of processors on which the tasks are
scheduled).

.

50 T T T T T T T T
’ ‘ m=2 (obs) ——
m=2 {est) -+
) m=4 (obs) e
40 b e s e e e e e - in=4-{est) -x
:) m=8 (obs) -
m=8 (est) -x--
m=16 (obs) -o;-
m=l6 (est) -+ |

30 F

20

Relative Reduction (in percentage)

4 6 8 10 12 14 16 18 20
PPR

Fig. 8. Estimated (est) and observed (obs) relative cost reduction R versus PPR

for Gauss graph (m corresponds to the number of processors on which the tasks are
scheduled).

86

VECPAR'98 - 3rd International Meeting on Vector and Parallel Processing

Influence of the Discretization Scheme on the
Parallel Efficiency of a Code for the Modelling of
a Utility Boiler

Pedro Jorge Coelho

Instituto Superior Técnico, Technical University of Lisbon
Mechanical Engineering Department
Av. Rovisco Pais, 1096 Lisboa Codex, Portugal

Abstract. A code for the simulation of the turbulent reactive flow with heat transfer in a
utility boiler has been parallelized using MPI. This paper reports a comparison of the
parallel efficiency of the code using the hybrid central differences/upwind and the MUSCL
schemes for the discretization of the convective terms of the governing equations. The
results were obtained using a Cray T3D and a number of processors in the range 1-128.1Itis
shown that higher efficiencies are obtained using the MUSCL scheme and that the least
efficient tasks are the solution of the pressure correction equation and the radiative heat
transfer calculation.

Keywords: Paralle] Computing; Discretization Schemes; Computational Fluid Dynamics;
Radiation; Boilers .

1 Introduction

The numerical simulation of the physical phenomena that take place in the
combustion chamber of a utility boiler is a difficult task due to the complexity of
those phenomena (turbulence, combustion, radiation) and to the range of geometrical
length scales which spans fours or five orders of magnitude [1]. As a consequence,
such a simulation is quite demanding as far as the computational resources are
concerned. Therefore, parallel computing can be very useful in this field.

The mathematical modelling of a utility boiler is often based on the numerical
solution of the equations governing conservation of mass, momentum and energy, and
transport equations for scalar quantities describing turbulence and combustion. These
equations are solved in an Eulerian framework and their numerical discretization yields
convective terms which express the flux of a dependent variable across the faces of the
control volumes over which the discretization is carried out. Many dicretization
schemes for the convective terms have been proposed along the years and this issue
has been one of the most important topics in computational fluid dynamics research.

87

FEUP - Faculdade de Engenharia da Universidade do Porto

The hybrid central differences/upwind scheme has been one the most popular ones,
especially in incompressible flows. However, it reverts to the first order upwind
scheme whenever the absolute value of the local Peclet number is higher than two,
which may be the case in most of the flow regions. This yields poor accuracy and
numerical diffusion errors. These can only be overcome using a fine grid which
enables a reduction of the local Peclet number, and will ultimately revert the scheme
to the second order accurate central differences scheme. However, this often requires a
grid too fine, and there is nowadays general consensus that the hybrid scheme should
not be used (see, e.g., [2]). Moreover, some leading journals presently request that
solution methods must be at least second order accurate in space. Alternative
discretization schemes, such as the skew upwind, second order upwind and QUICK, are
more accurate but may have stability and/or boundedness problems. Remedies to
overcome these limitations have been proposed more recently and there are presently
several schemes available which are stable, bounded and at least second order accurate
(see, e.g., [3-9)).

Several high resolution schemes have been incorporated in the code presented in
[10] for the calculation of laminar or turbulent incompressible fluid flows in two or
three-dimensional geometries. Several modules were coupled to this code enabling the
modelling of combustion, radiation and pollutants formation. In this work, the code
was applied to the simulation of a utility boiler, and a comparison of the efficiency
obtained using the hybrid and the MUSCL ([11]) schemes is presented. The
mathematical mode! and the parallel implementation are described in the next two
sections. Then, the results are presented and discussed, and the conclusions are
summarized in the last section.

2 The Mathematical Model
2.1 Main features of the rﬁodel

The mathematical model is based on the numerical solution of the density weighted
averaged form of the equations governing conservation of mass, momentum and
energy, and transport equations for scalar quantities. Only a brief description of the
reactive fluid flow model is given below. Further details may be found in [12].

The Reynolds stresses and the turbulent scalar fluxes are determined by means of
the k-€ eddy viscosity/diffusivity model which comprises transport equations for the
turbulent kinetic energy and its dissipation rate. Standard values are assigned to all the
constants of the model.

Combustion modelling is based on the conserved scalar/probability density
function approach. A chemical equilibrium code is used to obtain the relationship
between instantaneous values of the mixture fraction and the density and chemical
species concentrations. The calculation of the mean values of these quantities requires
an integration of the instantaneous values weighted by the assumed probability density

88

VECPAR'98 - 3rd International Meeting on Vector and Parallel Processing

function over the mixture fraction range. These calculations are performed a priori and
stored in tabular form.

The discrete ordinates method [13] is used to calculate the radiative heat transfer in
the combustion chamber. The S, approximation, the level symmetric quadrature
satisfying sequential odd moments [14] and the step scheme are employed. The radiant
superheaters which are suspended from the top of the combustion chamber are
simulated as baffles without thickness as reported in [15]. The radiative properties of
the medium are calculated using the weighted sum of grey gases model.

The governing equations are discretized over a Cartesian, non-staggered grid using a
finite volume/finite difference method. The convective terms are discretized using
either the hybrid or the MUSCL schemes. The solution algorithm is based on the
SIMPLE method. The algebraic sets of discretized equations are solved using the
Gauss-Seidel line-by-line iterative procedure, except the pressure correction equation
which is solved using a preconditioned conjugate gradient method.

2.2 Discretization of the convective terms

The discretized equation for a dependent variable ¢ at grid node P may be written in the
following compact form:

aP¢P=§.ai¢i+b m)

where the coeficients a; denote combined convection/diffusion coefficients andbisa
source term. The summation runs over all the neighbours of grid node P (east, west,
north, south, front and back). Derivation of this discretized equation may be found,
e.g., in [16]. If the convective terms are computed by means of the hybrid
upwind/central differences method, then the system of equations (1) is diagonally
dominant and can be solved using any conventional iterative solution technique. Ifa
higher order discretization scheme is used, the system of equations may still have a
diagonally dominant matrix of coefficients provided that the terms are rearranged using
a deferred correction technique [17]. In this case, equation (1) is written as:

& gp =Tl 0+ b+ 3G (0] 0y @

where the superscript U means that the upwind scheme is used to compute the
corresponding variable or coefficient, and Cj is the convective flux at cell face j. The
last term on the right hand side of the equation is the contribution to the source term
due to the deferred correction procedure.

The high order schemes were incorporated in the code using the normalized variable
and space formulation methodology [18]. According to this formulation, denoting by
U, C, and D the upstream, central and downstream grid nodes surrounding the control
volume face f (see Figure 1), the following normalized variables are defined:

89

FEUP - Faculdade de Engenharia da Universidade do Porto

¢ =20u ©
op-%u

3= XXy @)
Xp-Xy

where x is the coordinate along the direction of these nodes. The upwind scheme
yields:

br=0c ©)
while the MUSCL scheme is given by:
0r=(2Xi-Xc)oc /% if 0 < bc < Xc/2 (62)
o = Xt - Xc + bC if Xcl2<bc<l+Xc-xt (6b)
or=1 ' if 1 +Xc-Xr<oc<1 (&)
& = 'd?c elsewhere (6d)

3 Parallel Implementation

The parallel implementation is based on a domain decomposition strategy and the
communications among the processors are accomplished using MPI. This standard is
now widely available and the code is therefore easily portable across hardware ranging
from workstation clusters, through shared memory modestly parallel servers to
massively parallel systems. Within the domain decomposition approach the
computational domain is split up into non-overlapping subdomains, and each
subdomain is assigned to a processor. Each processor deals with a subdomain and
communicates and/ synchronizes its actions with those of other processors by
exchanging messages.

The calculation of the coefficients of the discretized equations in a control volume
requires the knowledge of the values of the dependent variables at one or two
neighbouring control volumes along each direction. Only one neighbour is involved if
the hybrid scheme is used, while two neighbours are involved if the MUSCL scheme

90

VECPAR’98 - 3rd International Meeting on Vector and Parallel Processing

is employed. In the case of control volumes on the boundary of a subdomain, the
neighbours lie on a subdomain assigned to a different processor. In distributed memory
computers a processor has only in its memory the data of the subdomain assigned to
that processor. This implies that it must exchange data with the neighbouring
subdomains.

Data transfer between neighbouring subdomains is simplified by the use of a buffer
of halo points around the rectangular subdomain assigned to every processor. Hence,
two planes of auxiliary points are added to each subdomain boundary, which store data
calculated in neighbouring subdomains. These data is periodically exchanged between
neighbouring subdomains to ensure the correct coupling of the local solutions into the
global solution. This halo data transfer between neighbouring processors is achieved
by a pair-wise exchange of data. This transfer proceeds in parallel and it will be referred
to as local communications. Local communication of a dependent variable governed by
a conservation or transport equation is performed just before the end of each sweep
(inner iteration) of the Gauss-Seidel procedure for that variable. Local communication
of the mean temperature, density, specific heat and effective viscosity is performed
after the update of these quantities, i.e., once per outer iteration. Besides the local
communications, the processors need to communicate global data such as the values of
the residuals which need to be accumulated, or maximum or minimum values
determined, or values broadcast. These data exchange are referred to as global
communications and are available in standard message passing interfaces.

While the parallelization of the fluid flow equations solver has been widely
addressed in the literature, the parallelization of the radiation model has received little
attention. The method employed here is described in detail in [19-20] and uses the
spatial domain decomposition method for the parallelization of the discrete ordinates
method. It has been found that this method is not as efficient as the angular
decomposition method, since the convergence rate of the radiative calculations is
adversely influenced by the decomposition of the domain, dropping fast as the number
of processors increases. However, the compatibility with the domain decomposition
technique used in parallel computational fluid dynamics (CFD) codes favours the use
of the spatial domain decomposition method for the radiation in the case of coupled
fluid flow/heat transfer problems.

4 Results and Discussion

The code was applied to the simulation of the physical phenomena taking place in the
combustion chamber of a power station boiler of the Portuguese Electricity Utility. It
is a natural circulation drum fuel-oil fired boiler with a pressurized combustion
chamber, parallel passages by the convection chamber and preheating. The boiler is
fired from three levels of four burners each, placed on the front wall. Vaporization of
the fuel is assumed to occur instantaneously. At maximum capacity (771 ton/h at 167
bar and 545°C) the output power is 250 MWe. This boiler has been extensively

91

FEUP - Faculdade de Engenharia da Universidade do Porto

investigated in the past, both experimentally and numerically (see, e.g., [1, 21-23]),
and therefore no predictions are shown in this paper which is concentrated only on the
parallel performance of the code.

The calculations were performed using the Cray T3D of the University of
Edinburgh in U.K. It comprises 256 nodes each with two processing units. Each
processing element consists of a DEC Alpha 21064 processor running at 150MHz and
delivering 150 64-bit Mflop/s. The peak performance of the 512 processing elements
is 76.8 Gflop/s.

Jobs running in the computer used in the present calculations and using less than
64 processors are restricted to a maximum of 30 minutes. Therefore, to allow a
comparison between runs with different number of processors the initial calculations,
summarized in tables 1 and 2, were carried out for a fixed number of iterations (30 for
the MUSCL discretization scheme and 80 for the hybrid scheme). They were obtained
using a grid with 64,000 grid nodes (20x40x80). Radiation is not accounted for in this
case. For a given number of processors different partitions of the computational
domain were tried, yielding slightly different results. The influence of the partition on
the attained efficiency is discussed in [24]. Only the results for the best partitions, as
far as the efficiency is concerned, are shown in tables 1 and 2.

The parallel performance of the code is examined by means of the speedup, S,
defined as the ratio of the execution time of the parallel code on one processor to the
execution time on np processors (tiotal), and the efficiency, €, defined as the ratio of
the speedup to the number of processors. The results obtained show that the highest
speedups are obtained when the MUSCL discretization scheme is employed. For
example when 128 processors are used speedups of 95.1 and 77.4 are achieved using
the MUSCL and the hybrid discretization schemes, respectively. As the number of
processors increases, so does the speedup of the MUSCL calculations compared to the
hybrid calculations. For np-2 we have S(IMUSCL)/S(hybrid)=1.04 while for np—128
that ratio is 1.23. There are two opposite trends responsible for this behaviour. In fact,
there is more data to communicate among the processors when the MUSCL scheme i is
used, because there are two planes of grid nodes in the halo region compared to only
one when the hybrid scheme is employed. However, the calculation time is
significantly higher for the MUSCL scheme since the computation of the coefficients
of the discretized equations is more involved. Overall, the ratio of the communications
to the total time is larger for the hybrid scheme, yielding smaller speedups.

The calculations were divided into five tasks, for analysis purposes, and their
partial efficiency is shown in tables 1 and 2. These tasks are: i) the solution of the
momentum equations, including the calculation of the convective, diffusive and source
terms, the incorporation of the boundary conditions, the calculation of the residuals,
the solution of the algebraic sets of equations and the associated communications
among processors; ii) the solution of the pressure correction equation and the
correction of the velocity and pressure fields according to the SIMPLE algorithm; iii)
the solution of the transport equations for the turbulent kinetic energy and its
dissipation rate; iv) the solution of other scalar transport equations, namely

92

VECPAR'98 - 3rd International Meeting on Vector and Parallel Processing

Table 1. Paralle! performance of the code for the first 80 iterations using the hybrid
discretization scheme.

Ty, 1 2 4 8 16 32 64 128

Partition Ixixl 1x2x1 1x4xl 1x8x1 2x4x2 2x4x4 2x4x8 2x8x8
tiotal(s) 1666.6 8509 439.5 2315 1235 67.8 36.8 21.5
S 1 1.96 3.79 7.20 13.5 24.6 45.2 77.4

g (%) — 979 948 900 843 768 707 605
g (%) — 995 979 949 895 843 796 717
£p (%) — 979 919 832 735 639 560 392
ene(%) — 967 925 868 828 756 694 609
€ccalars (%) — 971 943 889 847 772 705 615
torop (%) — _ 97.6 949 936 871 765 735 717

Table 2. Parallel performance of the code for the first 30 iterations using the
MUSCL discretization scheme.

n, 1 2 4 8 16 32 64 128

Partition 1Ixixl 1x2x1 1Ixd4x] 1x8x1 2x4x2 2x4x4 2x4x8 2x8x8
teotal(s) 1692.0 8322 420.8 2159 1161 61.0 319 17.8
S 1 2.03 4.02 7.84 14.6 27.7 53.1 95.1

g (%) — 1017 1005 980 911 867 829 743
Evel (%) — 977 978 971 913 887 8.7 821
gp (%) 953 841 707 592 499 419 286
Exe (%) — 1030 1022 1000 932 894 860 785
Eccatars (%) — 1068 1064 1045 982 942 909 845
Eorop (%) — 979 957 _93.6 868 80.6 769 718

the enthalpy, mixture fraction and mixture fraction variance equations; v) the
calculation of the mean properties, namely the turbulent viscosity and the mean values
of density, temperature and chemical species concentrations. The efficiencies of these
five tasks are referred to as €y, €p, Ek,es Escalars and €pyop, respectively.

It can be seen that the efficiency of the pressure correction task is the lowest one,
and decreases much faster than the efficiencies of the other tasks when the number of
processors increases. The reason for this behaviour is that the amount of data to be
communicated associated with this task is quite large, as discussed in [24-25].
Therefore, the corresponding efficiency is strongly affected by the number of
processors. The computational load of this task is independent of the discretization
scheme of the convective terms because the convective fluxes across the faces of the
control volumes are determined by means of the interpolation procedure of Rhie and
Chow [26] and there is no transport variable to be computed at those faces as in the
other transport equations. However, the communication time is larger for the MUSCL
scheme, due to the larger halo region. Therefore, the task efficiency is smaller for the
MUSCL scheme, in contrast to the overall efficiéncy.

93

FEUP - Faculdade de Engenharia da Universidade do Porto

The efficiency of the properties calculation is slightly higher for the hybrid scheme
if np=16, and equal or slightly lower in the other cases, but it does not differ much
from one scheme to the other. This is a little more difficult to interpret since the
computational load of this task is also independent of the discretization scheme and the
communication time is larger for the MUSCL scheme. Hence, it would be expected a
smaller efficiency in the case of the MUSCL scheme, exactly as observed for the
pressure task. But the results do not confirm this expectation. It is believed that the
reason for his behaviour is the following.

If the turbulent fluctuations are small, the mean values of the properties (e.g.,
density and temperature) are directly obtained from the mean mixture fraction,
neglecting those fluctuations. If they are significant, typically when the mixture
fraction variance exceeds 104, then the mean values are obtained from interpolation of
the data stored in tabular form. This data is obtained a priori accounting for the
turbulent fluctuations for a range of mixture fraction and mixture fraction variance
values. Although the interpolation of the stored data is relatively fast, it is still more
time consuming than the determination of the properties in the case of negligible
fluctuations. Therefore, when the number of grid nodes with significant turbulent
fluctuations increases, the computational load increases too. Since the calculations
start from a mixture fraction variance field uniform and equal to zero, a few iterations
are needed to increase the mixture fraction variance values above the limit of 10"4. The
results given in tables 1 and 2 were obtained using a different number of iterations, 30
for the MUSCL scheme and 80 for the hybrid scheme. So, it is expected that in the
former case the role of the turbulent fluctuations is still limited compared to the last
case. This means that the computational load per iteration will be actually higher for
the hybrid scheme, rather than identical in both cases as initially assumed. This would
explain the similar task efficiency observed for the two schemes.

The three remaining tasks, i), iii) and iv), exhibit a similar behaviour, the
efficiency being higher for the calculations using the MUSCL scheme. This is
explained exactly by the same reasons given for the overall efficiency. In both cases,
the efficiency of these tasks is higher than the overall efficiency, compensating the
smatler efficiency of the pressure task. For a small number of processors the efficiency
of these tasks slightly exceeds 100%. This has also been found by other researchers
and is certainly due to a better use of cache memory.

Tables 3 and 4 summarize the results obtained for a complete run, i.e., for a
converged solution, using 32, 64 and 128 processors. Convergence is faster if the
hybrid scheme is employed, as expected. Regardless of the discretization scheme, there
is a small influence of the number of processors on the convergence rate, and although
this rate tends to decrease for a large number of processors, it does not change
monotonically. The complex interaction between different phenomena and the non-
linearity of the governing equations may be responsible for the non-monotonic
behaviour which has also found in other studies. Since the smaller number of
processors used in these calculations was 32, the efficiency and the speedup were

94

VECPAR'98 - 3rd International Meeting on Vector and Parallel Processing

Table 3. Parallel performance of the code using the hybrid discretization scheme

np 32 64 128
Partition 2x4x4 2x4x8 2x8x8
Niter 1758 1749 1808

trotal () 1982 1107 701
Srel 1 1.79 2.83

&re1 (%) — 89.5 70.7
Erel, vel (%) —_ 95.0 83.0
Erel, p (%) - 86.3 58.9
Erel, k, £ (%) — 91.6 78.1
€rel, scalars (%) — 90.9 77.5
Erel, prop (%) — 99.1 92.6
_Erel, radiation (%) — 82.7 58.1

Table 4. Parallel performance of the code using the MUSCL scheme

n, 32 64 128
Partition 2x4x4 2x4x8 2x8x8
DNiter 3244 3215 3257
teotal (5) 7530 4119 2524
Srel 1 1.83 2.98
€rel (%) — 91.4 74.6
Erel, vel (%) —_ 98.1 90.7
Erel, p () — 82.8 54.5
Erel, k, ¢ (%) — 96.5 86.4
Erel, scalars (%) — 97.3 88.3
Erel, prop (%) — 96.1 87.9
€rel, radiation (%) — 75.6 49.0

computed taking the run with 32 processors as a reference. This means that the values
presented in tables 3 and 4, denoted by the subscript rel, are relative efficiencies and
speedups. The relative speedup is higher when the MUSCL scheme is employed, in
agreement with the trend observed in tables 1 and 2 for the first few iterations.

There are two tasks that exhibit a much smaller efficiency than the others: the
solution of the pressure correction equation and the calculation of the radiative heat
transfer. The low efficiency of the radiative heat transfer calculations is due to the
decrease of the convergence rate with the increase of the number of processors [19-20].
The radiation subroutine is called with a certain frequency, typically every 10 iterations
of the main loop of the flow solver (SIMPLE algorithm). The radiative transfer
equation is solved iteratively and a maximum number of iterations, 10 in the present
work, is allowed. If the number of processors is small, convergence is achieved in a
small number of iterations. But when the number of processors is large, the limit of

95

FEUP - Faculdade de Engenharia da Universidade do Porto

10 iterations is achieved, and a number of iterations smaller than this maximum is
sufficient for convergence only when a quasi-converged solution has been obtained.
Both the pressure and the radiation tasks have a lower partial efficiency if the MUSCL
scheme is used. In fact, the computational effort of these tasks is independent of the
discretization scheme, and the communication time is higher for the MUSCL scheme.
The same is true, at least after the first few iterations, for the properties task. The
other tasks (momentum, turbulent quantities and scalars) involve the solution of
transport equations and their computational load strongly depends on how the
convective terms are discretized. Hence, their efficiencies are higher than the overall
efficiency, the highest efficiencies being achieved for the MUSCL scheme.

5 Conclusions

The combustion chamber of a power station boiler was simulated using a Cray T3D
and a number of processors ranging from 1 to 128. The convective terms of the
governing equations were discretized using either the hybrid central differences/upwind
or the MUSCL schemes, and a comparison of the parallel efficiencies attained in both
cases was presented. The MUSCL scheme is more computationally demanding, and
requires more data to be exchanged among the processors, but it yields higher speedups
than the hybrid scheme. An examination of the computational load of different tasks of -
the code shows that two of them are controlling the speedup. These are the solution of
the pressure correction equation, which requires a lot of communications among
processors, and the calculation of the radiative heat transfer, whose convergence rate is
strongly dependent on the number of processors. The efficiency of these tasks, as well
as the efficiency of the properties calculation task, is higher for the hybrid than for the
MUSCL schemes. On the contrary, the efficiency of the tasks that involve the

solution of transport equations is higher for the MUSCL than for the hybrid scheme,
and it is also higher than the overall efficiency.

Acknowledgements

The code used in this work was developed within the framework of the project Esprit
No. 8114 — HP-PIPES sponsored by the European Commission. The calculations
performed in the Cray T3D at the University of Edinburgh were supported by the
TRACS programme, coordinated by the Edinburgh Parallel Computing Centre and
funded by the Training and Mobility of Researchers Programme of the European
Union.

96

VECPAR'98 - 3rd International Meeting on Vector and Parallel Processing

References

1.

10.

11.

12.

13.

14.

15.

Coelho, P.J. and Carvalho, M.G.: Application of a Domain Decomposition
Technique to the Mathematical Modelling of a Utility Boiler. International
Journal for Numerical Methods in Engineering, 36 (1993) 3401-3419.

Leonard, B.P. and Drummond, J.E.: Why You Should Not Use "Hybrid" Power-
law, or Related Exponential Schemes for Convective Modelling — There Are
Much Better Alternatives. Int. J. Num. Meth. Fluids, 20 (1995) 421-442.

Harter, A., Engquist, B., Osher S., and Chakravarthy S. : Uniformly High Order
Essentialy Non-Oscillatory Schemes, IIL. J. Comput Phys., 71 (1987) 231-303.
Gaskell, P.H. and Lau, A.K.C.: Curvature-compensated Convective Transport:
SMART, a New Boundedness-transport Algorithm. Int. J. Num. Meth. Fluids, 8
(1988) 617-641.

Zhu, J.: On the Higher-order Bounded Discretization Schemes for Finite Volume
Computations of Incompressible Flows. Computer Methods Appl. Mech. Engrg.,
98 (1992) 345-360.

Darwish, M.S.: A New High-Resolution Scheme Based on the Normalized
Variable Formulation. Numerical Heat Transfer, Part B, 24 (1993) 353-371.

Lien, F.S. and Leschziner, M.A.: Upstream Monotonic Interpolation for Scalar
Transport with Application to Complex Turbulent Flows. Int. J. Num. Meth.
Fluids, 19 (1994) 527-548.

Choi, S.K., Nam, H.Y., Cho, M.: A Comparison of Higher-Order Bounded
Convection Schemes. Computer Methods Appl. Mech. Engrg., 121 (1995) 281-
301.

Kobayashi, M.H., and Pereira, J.C.F.: A Comparison of Second Order
Convection Discretization Schemes for Incompressible Fluid Flow.
Communications in Numerical Methods in Engineering, 12 (1996) 395-411.
Blake, R., Carter, J., Coelho, P.J., Cokljat, D. and Novo, P.: Scalability and
Efficiency in Parallel Calculation of a Turbulent Incompressible Fluid Flow in a
Pipe. Proc. 2nd Int. Meeting on Vector and Parallel Processing (Systems and
Applications), Porto, 25-25 June (1996).

Van Leer, B.: Towards the Ultimate Conservative Difference Scheme. V. A
Second-Order Sequel to Godunov's Method. J. Comput. Physics, 32 (1979) 101-
136.

Libby, P.A. and Williams, F.A.: Turbulent Reacting Flows. Springer-Verlag,
Berlin (1980). ‘

Fiveland, W.A.: Discrete-ordinates Solutions of the Radiative Transport Equation
for Rectangular Enclosures. J. Heat Transfer, 106 (1984) 699-706.

Fiveland, W.A.: The Selection of Discrete Ordinate Quadrature Sets for Anistropic
Scattering. HTD-160, ASME (1991) 89-96.

Coelho, P.J., Gongalves, J M., Carvalho, M.G. and Trivic, D.N.: Modelling of
Radiative Heat Transfer in Enclosures with Obstacles. International Journal of
Heat and Mass Transfer, 41 (1998) 745-756.

97

16.

17.

18.

19.

20.

21.

22.

23,

24,

25.

26.

FEUP - Faculdade de Engenharia da Universidade do Porto

Patankar, S.V.: Numerical Heat Transfer and Fluid Flow. Hemisphere Publishing
Corporation (1980).

Khosla, P.K. and Rubin, S.G.: A Diagonally Dominant Second-order Accurate
Implicit Scheme. Computers & Fluids, 1 (1974) 207-209.

Darwish, M.S. and Moukalled, F.H.: Normalized Variable and Space Formulation
Methodology for High-Resolution Schemes. Numerical Heat Transfer, Part B, 26
(1994) 79-96.

Coelho, P.J., Gongalves, J. and Novo, P.: Parallelization of the Discrete
Ordinates Method: Two Different Approaches In Palma, J., Dongarra, J. (eds.):
Vector and Parallel Processing - VECPAR'96. Lecture Notes in Computer
Science, 1215. Springer-Verlag (1997) 22-235.

Gongalves, J. and Coelho, P.J.: Parallelization of the Discrete Ordinates Method.
Numerical Heat Transfer, Part B: Fundamentals, 32 (1997) 151-173.

Cassiano, J., Heitor, M.V., Moreira, A.L.N. and Silva, T.F.: Temperature,
Species and Heat Transfer Characteristics of a 250 MWe Utility Boiler.
Combustion Science and Technology, 98 (1994) 199-215.

Carvalho, M.G., Coelho, P.J., Moreira, A.L.N., Silva, AM.C. and Silva, T.F.:
Comparison of Measurements and Predictions of Wall Heat Flux and Gas
Composition in an Oil-fired Utility Boiler. 25th Symposium (Int.) on
Combustion, The Combustion Institute (1994) 227-234.

Coelho, P.J. and Carvalho, M.G.: Evaluation of a Three-Dimensional
Mathematical Model of a Power Station Boiler. ASME J. Engineering for Gas
Turbines and Power, 118 (1996) 887-895.

Coelho, P.J.: Parallel Simulation of Flow, Combustion and Heat Transfer in a
Power Station Boiler. 4th ECCOMAS Computational Fluid Dynamics
Conference, Athens, Greece, 7-11 September (1998).

Coelho, P.J., Novo, P.A. and Carvalho, M.G.: Modelling of a Utility Boiler
using Parallel Computing. 4th Int. Conference on Technologies and Combustion
for a Clean Environment, 7-10 July (1997). i

Rhie, C.M., and Chow, W.L.: Numerical Study of the Turbulent Flow past an
Airfoil with Trailing Edge Separation. AIAA J., 21 (1983) 1525-1532.

98

VECPAR'98 - 3rd International Meeting on Vector and Parallel Processing

Parallel Implementation of Edge-Based Finite
Element Schemes for Compressible Flows on
Unstructured Grids

Paulo Lyral, Ramiro Willmersdorf!, Marcos Martins?. and Alvaro Coutinho®

! Departamento de Engenharia Mecanica - UFPE
Recife/PE, Brasil '
prolyralnpd.ufpe.br rbv@demec. ufpe.br
2 Departamento de Engenharia Civil - COPPE/UFRJ
Rio de Janeiro/RJ, Brasil
marcos@civilOl.coc.ufrj.br alvaro@coc.ufrj.br

Abstract. Some aspects of the parallel/vector implementation of an
adaptive edge-based high-resolution scheme, for the solution of compress-
ible Euler equations on unstructured grids, on current shared memory
supercomputers are presented. We address the use of an alternative data
structure, known as superedge, which groups together several edges and
which attempts to find a good balance between floating point (flop) and
indirect addressing (i/a) operations. It is shown that the practical use-
fulness of the flow solver has been dramatically improved by efficient
implementation on high performence computer configurations and also
that switching from edge-based to a superedge data structured is not
worthwhile for codes which already have suficiently high rate between

(flop) and (i/a).

1 Introduction

In recent vears, there has been a significant level of research into the application
of unstructured mesh methods to the simulation of fluid dynamic problems.
For unstructured triangular and tetrahedral meshes, major progress has been
made in the areas of automatic mesh generation and flow solver accuracy (1,
2]. However, the storage of mesh connectivity information increases the use of
computer memory and indirect addressing to retrive local information required
for the flow solver algorithm. To reduce (i/a) and memory requirements. finite
element schemes based on edge-based data structures have been introduced by
Morgan et al. [3], inspired on the finite volume schemes (see Barth in [4]). The use
of an edge-based data structure also enables a straightforward implementation
of upwind-biased schemes in the context of finite element methods.

In this paper. an upwind biased high-resolution flux-split algorithm is used
as the general approach for constructing high-resolution schemes. An adaptive
edge-hased Galerkin finite element formulation is used as the building block for
the multidimension generalization of the essentially one-dimensional upwinding

99

FEUP - Faculdade de Engenharia da Universidade do Porto

concepts. The resultant flow solver is used for the solution of compressible Euler
equations on unstructured grids. A simple explicit time integration is adopted
to drive the solution towards a steady-state. For a detailed description on the
flow solver algorithm and related issues see Lyra [2].

The number of repeated evaluation of right-hand sides (RHS) or residuals is
quite large and time consuming with explicit upwind-like schemes. The use of
efficient data structures, searching algorithms and implementations is fundamen-
tal. The main steps adopted for a parallel/vector implementation on the CRAY
J90 of the flow code using either an edge-based or the alternative superedges
data structure are described. The techniques used are simple and try to reduce
investiment in man-hours when re-writing the code for the use of alternative data
structures [5]. These issues will be discussed in detail. Finally, we will present a
comparative performance study, on different computer plataforms, of edge-based
and triangular superedges schemes for the solution of a typical two dimensional
model problem of a supersonic flow past a circular cylinder.

2 Numerical Solution Algorithm

2.1 Edge-Based Finite Element Formulation

Assuming that the spatial 2-D domain {2 is discretized into an unstructured as-
sembly of linear triangular elements, after employing the Galerkin finite element
approximation, the resultant discrete formulation can be conveniently expressed
as

Ff.
dU < (FSi1c + F1.Sre)
M— = - £ s s
+()_Dy(4F; +2F;, + F{ = Fi)r . (1)
/=1

where an edge-based data structure has been employed instead of the conven-
tional finite element data structure which is based on the connectivity of the
elements. This allows a direct implementation of different types of standard 1-D
upwind or centered shock-capturing methods within an unstructured grid con-
text [2. 3].

The extension of the one dimensional upwinding concepts to two-dimensional
generic discretisations consists on the use of an edge-based Galerkin finite ele-
ment formulation together with different strategies to build a local 1-D like
“structured” stencil by means of an interpolation reconstruction technique [6].
It is well known that the use of this data structure has additional beneficial
effects. in terms of both processing time and memory requirements [3]. These

100

VECPAR'98 - 3rd International Meeting on Vector and Parallel Processing

effects will be of particular importance when the extension of these methods to
the solution of large scale three dimensional problems is done.

In (1). my is the number of sides connected to node I. the second term on
the right hand side denotes a correction required for the nodes I which lie on
the boundary of the computational domain and

Crie = (Che Chre) s Lre = |Crrsl5 St = Ch/ICusl - (2)

Here, Cf ;. and Dy are coefficients which depends on the finite element trial
functions. From the asymmetry of the edge weights, the numerical discretization
scheme can be immediately observed to possess a conservation property, in the
sense that the sum of the contributions made by any interior edge is zero (3].
Finallv. M represents the finite element, consistent. mass matrix.

Practical algorithms for the Euler equations can be produced by evaluating
a convenient numerical flux]-'}q,s in the direction of the weighting coefficient
S}IC in the place of the actual flux FISIS. In this work the flux difference scheme
proposed by Roe [7] is adopted as the lower-order stable formulation.

2.2 High-Resolution Scheme

"The MUsCL scheme (Monotonic Upstream-centered Schemes for Conservation

Laws). proposed by Van Leer (8], is used to build high-resolution schemes. The
higher-order slope-limited MUSCL can be defined through the numerical flux

S 1 P13, j i T j 57y o~ o~
fre = ZUPHTL)S] + FORS),) = 1AL U TR =T} ()

where a piecewise linear reconstruction, with the introduction of non-linear lim-
iters. is used to compute the limited interface values Uz and Ug.

The key point of this class of higher-order procedure is the extension of
the support of the lower-order stencil and the guarantee of the monotonicity
property of the lower-order scheme. For a detailed description on the different
formulations, for a discussion on several possibilities for the construction of the
extended stencil, the choice of the limiter functions and other related issues
see Lyra [2] and Lyra et al. [6]. Several different limiter functions. which may be
computed using an upwind stencil or a symmetric stencil, are available. Here. the
primitive variables are chosen to be limited for economical reasons. Numerical
evidence supports this choice. since no oscillation. or very little oscillation. 1s
present in the solution. The limit function given in [9] was used in the analysis
presented in this paper.

Equation (1) represents the time evolution of the unknown vector () at
node I of the mesh. A practical solution algorithm is then produced by further
discretizing the time dimension, with a simple explicit time stepping scheme. The
consistent finite element “mass” matrix M is replaced by the standard lumped
(diagonal) mass matrix My. This enables a truly explicit time integration and
does not alter the final steady state solution, which is of primary concern here.

101

FEUP - Faculdade de Engenharia da Universidade do Porto

For the steady-state analysis studied. local time stepping was used to accelerate
the convergence rate towards steady-state.

3 The Computational Implementation and Other Issues

3.1 Mesh Generation and Adaption

The unstructured triangulations adopted for the 2-D computations were gener-
ated with the advancing front technique. An adaptive mesh enrichment proce-
dure for steady state solution was used to improve the accuracy of the inviscid
computations analysed. The error estimates are based upon concepts from in-
terpolation theory and are used to control automatically the adaptivity. Further
details about the mesh generator, error analysis involved in the procedure and
about the adaptive procedure itself can be found in Morgan et al. [3].

3.2 Data Structure

The standard finite element data structured consists of the physical coordinates
simply listed by node numbers, a list of the connectivity of each element and
a list of boundary edges connectivities. With this geometrical and topological
data. the integral terms that appear on the finite element formulation of the
problem can be calculated with a loop over the elements and a loop over the
boundary edges with the contributions to the nodes being accumulated during
the process.

As an alternative to the element-based data structure, we can represent an
unstructured grid in terms of an edge-based data structured. The physical coor-
dinates are simply listed by node numbers and a list of boundary edge connectiv-
ities is adopted, but now the topology inside the domain is characterized through
the edges and their connectivities. A significant reduction in gather/scatter costs
and memory requirements can be realized by going from an element-based to an
edge-based data structure (see Luo et al. [10], Morgan et al. [3] and Martins et
al. [11]). this being more pronunced in three dimensional simulations.

The use of edge-based data structure in CFD, as opposed to the element-
based data structure, has the following well stablished advantages: a) better
performance of the numerical procedures in terms of computational efficiency
(the computational effort necessary to evaluate and assemble edge contributions
to the nodes is significantly reduced when compared with the element coun-
terpart and the indirect addressing is also reduced): b) allows straightfoward
construction of different flow solver algorithms, by generalizing one-dimensional
algorithms (from centered to upwinding approaches): c) easy to implement nu-
merical schemes for both 2D and 3D applications, also due to the 1-D like data
structure: d) satisfaction of discrete conservation property.

Léhner [5] pointed out that the expected reduction in the total CPU cost can
be partially lost if the indirect addressing overhead accounts for the major part
of the total CPU requirements. With the design criterion of operating as much as

102

VECPAR'98 - 3rd International Meeting on Vector and Parallel Processing

possible on gathered data. Lohner presents several alternative data structures.
According to Lohner the adoption of stars data structure leads to very small
i/a reduction with the penalty of the necessity of major code rewriting and
with possible drawbacks in terms of large bandwidths and cache-misses. The
use of chains data structure can lead to.good i/a reduction but would prevent
implementation on vector processors.

Analysing the main characteristics of the proposed alternative data structures
suggested by Lohner [5], the superedge alternative seems to represent the best
compromise, being suitable for scalar or vector implementations. Martins et
al. {11] have demonstrated that migrating from an edge-based data structured
to a superedge data structured would lead to at least 20% gain in CPU usage
for three dimensional potential flows. We will address the use of superedges for
the explicit solution the Euler equations using high-resolution schemes.

3.3 Pre-Processing

The generated grids, either initial or refined, are provided in the conventional
element-based data structure format. Thus, a pre-processing of the grid must be
undertaken before it can be used with an edge-based flow analysis algorithm.
After the preprocessor stage the element-based data structure can be discarded.
The pre-processor stage consists basically on the following steps:

1. Build the arrays with the grid and boundary topology. which are lists of
edges and boundary faces with their respective connectivities:

2. Using superedges. group edges as superedges and organize the remaining
edges:

3. Compute and store the edges and boundary faces weighting coefficients [2]:

4. Find and store the required information necessary for the use of the dummy
nodes:

5. Employ a colouring algorithm [12] to group the edges, superedges and bound-
ary faces in such a way that no repetition in the node numbering occurs
amongst items of the same group: ‘

Remark 1. The information required to describe an unstructured mesh is mini-
mal when using an edge-based data structure. A hash table searching technique
is used to extract the edges from the original data structure.

Remark 2. As the number of edges in a group increases the longer and more
complicate loops have to be implemented. Therefore, as in the words of Lohner
[5] “a balance has to be struck between efficiency and code simplicity. clarity
and maintenance”. A triangle superedge was adopted so that. besides the above
reasons, very simple grouping algorithm can be devised, i.e. grouping the three
sides of a triangle as a superedge in such a way that as much three-edge groups
as possible are formed and then organize the remaining edges [11].

Remark 3. The three nodes of the triangle that contains the dummy node. and
two shape functions evaluated at the dummy node for the interpolation step. are

103

FEUP - Faculdade de Engenharia da Universidade do Porto

kept in memory for each of the two dummy nodes that belong to each side. This
procedure represents a memory overhead of ten times the total number of sides
in a 2-D computation. but such reconstruction approach is very robust for high
speed flow simulation and recommended in such flow regimes. The alternating
digital tree [12] algorithm is adopted for the searching operations required. Other
reconstruction techniques which incur in no or very litle memory overhead [2. 6]
can be employed.

Remark {. The colouring algorithm [12] is used to prevent recurrence inside the
loops used in the flow solution algorithm. therefore allowing vector and parallel
processing of these loops.

3.4 Parallel/Vector Implementation

The operations performed inside the loops over the edges and boundary faces.
which take place in the flow solver edge-based algorithm are: gather information
from the nodes of each edge; operate on this information: scatter the results back
to the nodes of the edges and add them to the nodal quantities.

These typical loops are entitely vectorizable provided each group {colour)
of superedges and/or edges, or boundary faces, is executed separately and an
appropriate compiler directive (e.g. 'DIR$ IVDEP, for CRAY supercomputers)
instructing the compiler is inserted before the vectorizable inner loop. Essentially,
these loops would be written like the one shown in Fig. 1. Clearly. some details
habe been omitted for conciseness.

Kk Loop over all colours

do 20 iblock = 1, nblock
*kk Compute first-and last edges in this colour
ok Loop over all edges in this color

'DIR$ IVDEP
do 10 is = isfirst, islast
inodel = iside(is,1).
inode2 = iside(is,?2)
kK Compute contributions al from side is

avar (inodel) = avar(inodel) + ail
“avar (inode2) avar(inode2) - a2
10 continue
20 continue

Fig. 1. Loop over edges

where nblock is the number of colours into which the mesh was dividided.
isfirst and islast are the first and last edges for each colour. iside is the

104

VECPAR’98 - 3rd International Meeting on Vector and Parallel Processing

array with the nodal connectivity of edges, avar is the variable to be updated
with this loop and a1 and a2 are the local contribuitions to avar of the nodes
of edge is. The computation of the local contributions. not shown in Fig. 1. can
demand a large number of operations, up to more than one hundred FORTRAN
statements in some routines used in the second order scheme.

To implement superedge loops, all loops such as the one shown in Fig. I
were modified to first loop over all triangular superedges, and then loop over the
remaining edges of the mesh. The results of these modifications are loops such
as the one shown in Fig. 2.

It is important to observe that the calculations for the local contributions of
the nodes. also not shown in Fig. 2, are identical to those in the loop over the
edges. So these changes could be made somewhat mechanically. using a “cut and
paste” facility of a modern text editor. This is not recommended, however, since
this procedure is very labour intensive, error prone and would result in extremely
long procedures that seriously compromise the readability and the longer term
maintenance of the computer program.

To avoid this problem, we collected all repeated computations into separated
subroutines. This is a classical technique to improve code modularity and re-
usability, which has not been widely used in vector processing because compilers
normally cannot vectorize loops with call to arbitrary subroutines. To overcome
this serious drawback. we used the inline facility (present in most modern com-
pilers. even for sequential machines), that expands the source code of the called
routine into the body of the calling program, before compilation. The compiler
therefore sees no function call and can vectorize and paralellize the loops as
usual. This procedure allows easy implementation of different alternative data
structures with very little effort for coding changes. once the pre-processed data
is available.

The inner loops were distributed to multiple processors using the autotash-
ing facilities available in CRAY machines. In the cases where loops were not
automatically tasked. even when the update of the variables in the loop was
independent because of the colouring, we inserted a compiler directive (/AJC'¥
DO ALL AUTOSCOPE VECTOR). similar to that adopted for vectorization.
to force the tasking of the loop.

The parallel regions in the code should be as long as possible. so that parallel
start-up costs are reduced. Apart from the size of the problem being analysed.
a proper balance on the number of components (edges, superedges or boundary
faces) in each colour is fundamental for an effective parallel speed up. Longer par-
allel regions can be obtained if we apply a domain decomposition and parallel
directives applied at a higher level in the program. This has not been imple-
mented vet because it would imply into a more complex rewriting of the code.
since we would need colourings on two levels. special treatment for the borders
hetween domains and some other issues.

105

FEUP - Faculdade de Engenharia da Universidade do Porto

ok Loop over all colours
do 20 iblock = 1, nblock
kK Compute first and last superedges in this colour
*kk Loop over all superedges in this color
'DIR$ IVDEP

'MIC$ DO ALL AUTOSCOPE VECTOR
do 10 is = isfirst, islast, 3
inodel = iside(is,1)

inode2 = iside(is+1,1)

inode3 = iside(is+2,1)
[T ’ Compute contribution al from edge s
TS Compute contribution a2 from edge is+1
ok Compute contribution a3 from edge is+2

avar(inodel) = avar(inodel) + al

= - a3
avar(inode2) = avar(inode2) + a2 - al
avar (inode3) = avar(inode3) + a2 - a2
10 continue
20 continue
*x Loop over all colours of remaining edges
do 40 iblock = 1, nblockr
* k% Compute first and last edges in this colour
ok Loop over all remaing edges in this color
'DIR$ IVDEP
'MIC$ DO ALL AUTOSCOPE VECTOR
do 30 is = isfirst, islast
inodel = iside(is,1)
inode2 = iside(is,2)
kK Compute contribution al from side 1is

avar (inodel)
avar (inode2) .
30 continue
40 continue

avar (inodel) + al
avar (inode2) - a2

Fig. 2. Loop over superedges

106

VECPAR'98 - 3rd International Meeting on Vector and Parallel Processing

Fig. 3. Steady flow past a cylinder at a Mach number 3. Final mesh and corresponding

Mach number contours.

4 Numerical Results and Conclusions

4.1 Numerical Application

This problem consists of a steady flow past a circular cylinder. at a free stream
Mach number of 3. The presence of sonic, stagnation and rarefaction zones makes
this problem challenging in terms of stability behavior. The final mesh, following
one adaptation, together with the corresponding Mach number contours are
shown in Fig. 3. This mesh consists of 24,979 elements and 12.651 nodes. Note
that both the bow shock and the quasi-rarefaction zone behind the cylinder are
well represented. with the recirculation and the weak shocks captured. A detailed
discussion on the numerical prediction using different flow solvers can be found
in [2]) and is not of interest here.

FEUP - Faculdade de Engenharia da Universidade do Porto

4.2 Performance Studies

The CPU time for preprocessing the data, i.e., to form the edge or superedge data
structure from the conventional element-based data structure and to do several
pre-computations, is less then 0.5 % of the total CPU time for the analysis and
so it is neglegible. The small time spent in the preprocessing step reflects the
fact that it is done only once per analysis and also the use of data structures and
algorithms which enable efficient sorting and searching operations (hash tables.
alternating direct trees, etc.).

The mesh shown in the figure 3 has 37,630 edges. For the analysis using the
superedge program the pre-processor was able to transform 86.75% of the edges
into superedges (10881 triangle superedges), while 13.25% (4987) remained as
single edges.

The performance of this test case was measured on three different computers,
a 486 PC. a SUN UltraSparc 1 workstation and a CRAY J90 vector/parallel
computer. The processing (CPU) times spent to simulate 5000 time steps are
show in table 1. The analysis includes the program using either an edge or
superedge data structure. considering both first-order and higher-order schemes.

Table 1. CPU times in seconds

Edges Superedges
Computer || 1% order 274 order | 1% order | 2™ order
PC 34144 66837 32784 64190
SUN 4449 5272 3356 5167
Cray 2170 3543 2152 3496

By analysing table 1, we see that we can achieve only a minor advantage
when using superedge instead of edge data structure for this application. The
time savings for the PC is just around 4%. for the SUN workstation it is from
2% to 4% and for the single processor CRAY supércomputer it is approximatly
1%.

The ratio between the number of floating point and indirect addressing oper-
ations is already big enough for upwind-based schemes, as already expected. For
instance, for the subroutine which computes Roe’s approximate Riemann solver
we have a ratio of approximately 6 and 8 floating points per indirect addressing
for the edge and superedge data structure respectively.

We have analysed the first-order scheme for 1000 iterations on a single pro-
cessor of CRAY J90 preventing vectorization. In this case we measured 2124
seconds and 1891 seconds for the CPU time with the edge and superedge data
structure respectively. The difference was surprisingly much bigger then previ-
ously. being about 12% less CPU time with superedges. This is probably due to a
bigger CPU overhead on indirect addressing when scalar processing is used. but
CRAY s vector computers are known not to perform well without vectorization.

108

VECPAR'98 - 3rd International Meeting on Vector and Parallel Processing

Regarding the vector performance. the Mflop/s (Million of floating point op-
erations per second) rates were measured on single CPU computations employing
CRAY s perfeiew tool. The sustained job performance on the CRAY J90 was
around 57 Mflop/s for higher-order analysis and around 50 Mflop/s for first-order
analysis. The use of either edge or superedge data structures had no significant
impact on the Mflop rates. The code has sequential regions which justify the
above values, somewhat lower than expected. The routines which have more
intensive computations and which are highly vectorized reach up to 83 Mflop/s.

Parallel and theoretical speed-ups were estimated with CRAY’s atezpert tool
on four processor, using the F90 CRAY's compiler. The actual and theoretical
speed-ups are presented in table 2. The theoretical speed-up in general is in good
agrement with the speed-up obtained on a dedicated run.

Table 2. Parallel performance on Cray J90

Edges Superedges
15¢ order | 2°¢ order | 15 order | 2" order
Achieved Speed-up 1.9 2.3 1.44 1.5
Theoretical Speed-up 2.0 2.5 2.4 3.1
Serial Code Portion 33.9% 20.7% 21.6% 9.4%

It was observed that more then 99% of the serial portion of the code refers
to the I/O routines. Such routines are called at each iteration or periodically for
printing and flushing the residuals for history of convergence and the solution for
possible re-starts of the analysis. respectively. Those subroutines could be easily
changed. reducing substantially the serial portion of the code and improving
vector and parallel performance. This was not done, however. to keep the code
robust for new challenging applications.

The importance of load balancing in the efficiency of the program can be eas-
ilv verified in the routine which solves the Riemann problem, using superedges.
It has two main loops: one over the superegdes and another one over the remain-
ing edges. as illustrated in Fig. 2. The second loop. over the edges. is exactly
the same as the loop used to solve the Riemann problem in the edge based pro-
gram. This loop parallelizes very well. and in the edge based program it reaches
a speed-up of about 3.9. In the superedge program. however, the speed-up of the
corresponding loop was only 1.9.

With superedges, the 4987 remaining edges were blocked into six unbalanced
colours (2191: 1702; 678; 364: 43 and 9 edges each), an artifact of the colouring
algorithm used: while with the edge program, which used a different colouring
algorithm. the whole 37630 edges were blocked into ten colours with a balanced
3763 edges each. The increase on the number of processor cannot be efficient if
the extra processors are assigned to loops so short that the overhead for setting
up the parallel loops is significant. This shows the importance of balancing the

109

FEUP - Faculdade de Engenharia da Universidade do Porto

number of components for each colour and also that only for complex problems
which demand very large meshes can we expect good scalabity and efficiency.

4.3 Conclusions

In this, paper we have addressed several important issues for simple and effective
implementation of numerical schemes on current shared memory supercomput-
ers. Superedges. and other alternative data structures, are interesting when the
indirect addressing operations account for an important portion of the total
computational cost. -

The use of superedges when solving the Euler equations using explicit high-
resolution upwind-based schemes, however, does not pay off. On a three dimen-
sional generalization of the current formulation we might expect a slightly larger
difference in the run times between edge and superedge data structure. Finally,
when an implicit implementation of the flow solver algorithm is devised, using
nonsymetrical solver such as GMRES, the matrix vector multiplication loop will
present a smaller ratio between floating point and indirect addressing operations,
and reducing i/a through the use of superedges might be worthwhile and could
be attempted.

4.4 Acknowledgments

The authors would like to thank the support of FINEP, Financiadora de Es-
tudos e Projetos, and FACEPE, Fundagdc de Amparo & Pesquisa do Estado
de Pernambuco, the use of computing facilities of NACAD/UFRJ. Niicleo de
Atendimento em Computacao de Alto Desempenho, and the help of Mr. Paulo
Tibério Bulhoes of Silicon Graphics/Cray Research, Brasil.

References

[1] AGARD. Special Course on Unstructured Grid Methods for Advection Dominated
Flows. Technical Report 787, France, 1992.

[2] P.R.M. Lyra. Unstructured Grid Adaptive Algorithms for Fluid Dynamics and
Heat Conduction. PhD thesis. University of Wales - Swansea. 1994.

[3] K. Morgan. J. Peraire. and J. Peiré. Unstructured Grid Methods for Compress-
ible Flows. In Report 787 - Special Course on Unstructured Grid Methods for
Advection Dominated Flows. AGARD. 1992.

[4] T.J. Barth. Aspects of Unstructured Grids and Finite-Volume Solvers for the
Euler and Navier-Stokes Equations. In AGARD Report 787 on Special Course
on Unstructured Grid Methods for Advection Dominated Flows, pages 6.1-6.61,
1992.

[5] R. Lohner. Edges. Stars, Superedges and Chains. Comp. Meth. Appl. Mech. Eng.,
111:255-63, 1994.

[6] P.R.M. Lyra. O. Hassan. and K. Morgan. Unstructured Grid Adaptive Solutions of
Hypersonic Viscous Flows. In 4th International Conference on Numerical Methods
for Fluid Dynamics. Oxford/UK. 1995.

110

[7]
[%]
(9]

(10]

(11]

VECPAR'98 - 3rd International Meeting on Vector and Parallel Processing

P.L. Roe. Approximate Riemann Solvers, Parameter Vectors and Difference
Schemes. J. Comp. Phys.. 43:357-372, 1981.

B. Van Leer. Towards the Ultimate Conservative Difference Scheme. V. A Second
Order Sequel to Godunov's Method. J. Comp. Phys., 32:101-136. 1979.

J.L. Thomas. An Implicit Multigrid Scheme for Hypersonic Strong-Interaction
Flowfields. In Proc. of the Fifth Copper Mountain Conference on Multigrid Meth-
ods, 1991.

H. Luo. J.D. Baum. R. Lohner, and J. Cabello. Adaptive Edge-Based Finite
Element Schemes for the Euler and Navier-Stokes Equations on Unstructured
Girids. Technical Report 93-0336. ATAA, 1993.

M.A.D. Martins. A.L.G.A. Coutinho. and J.L.D. Alves. Parallel Iterative Solution
of Finite Element Svstems of Equations Emploving Edge-Based Data Structures.
In Proc. of the 8th SIAM Conf. on Parallel Processing for Scientific Computing.
1997.

1. Peiré. J. Peraire. and K. Morgan. FELISA SYSTEM:Reference Manual partl -
Basic Theory. Technical report, University of Wales Swansea Report CR/821/94.
1994.

1

FEUP - Faculdade de Engenharia da Universidade do Porto

112

VECPAR'98 - 3rd International Meeting on Vector and Parallel Processing

Parallel 3D air flow simulation
on workstation cluster

Jean-Baptiste Vicaire!, Loic Prylli, Georges Perrot'. and Bernard
Tourancheau®*

! LHPC & INRIA REMAP, laboratoire LIP, ENS-Lyon 699364 Lyon - France
Loic.Prylli@ens-lyon.fr,
WWW home page: http://www.ens-1yon.fr/LIP
2 LHPC & INRIA REMAP, laboratoire LIGIM bat710, UCB-Lyon
69622 Villeurbanne - France
Bernard.Tourancheau®inria.fr,
WWW home page: http://lhpca.univ-lyonl.fr

Abstract. Theseeis a 3D panel method code, which calculates the char-
acteristic of a wing in an inviscid, incompressible, irrotational. and steady
airflow. in order to design new paragliders and sails.

In this paper. we present the parallelization of Thesee for low cost work-
station/PC clusters. Thesee has been parallelized using the ScaLAPACK
library routines in a systematic manner that lead to a low cost develop-
ment. The code written in C is thus very portable since it uses only high
level libraries. This design was very efficient in term of manpower and
gave good performance results. The code performances were measured
“on 3 clusters of computers connected by different LANs : an Ethernet
LAN of SUN SPARCstation, an ATM LAN of SUN SPARCstation and
a Myvrinet LAN of PCs. The last one was the less expensive and gave the
best timing results and super-linear speedup.

1 Introduction

The aim of this work is to compare the performance of various parallel platforms
on a public domain aeronautical engineering simulation software similar to those
routinely used in the aeronautical industry where the same numerical solver is
used, with a less user-friendly interface, which results in a more portable code
(smaller size, no graphic library).

Parallel Thesee is written in C with the ScaLAPACK(3] library routines and
can be run on top of MPI[14] or PVM[6], thus the application is portable on a
wide range of distributed memory platforms.

We introduce in the following the libraries that are necessary to understand
the ScaLAPACK package. Then we give an insight of the parallelization of the
code. Tests are presented before the conclusion.

* This work was supported by EUREKA contract EUROTOPS, LHPC {(Matra
MSI, CNRS, ENS-Lyon, INRIA, Région Rhéne-Alpes), INRIA Rhéne-Alpes project
REMAP, CNRS PICS program. CEE KIT contract

113

FEUP - Faculdade de Engenharia da Universidade do Porto

2 Software libraries

2.1 LAPACK. BLAS and BLACS libraries

The BLAS (Basic Linear Algebra Subprograms) are high quality "building block"
routines for performing basic vector and matrix operations. Level 1 BLAS do
vector-vector operations, Level 2 BLAS do matrix-vector operations. and Level 3
BLAS do matrix-matrix operations.

LAPACK]1] provides routines for solving systems of simultaneous linear
equations, least-squares solutions of linear systems of equations, eigenvalue prob-
lems, and singular value problems. The associated matrix factorizations (LU,
Cholesky, QR, SVD, Schur, generalized Schur) are also provided. The LAPACK
implementation used as much as possible the BLAS building block to ensure
efficiency, reliability and portability.

The BLACS (Basic Linear Algebra Communication Subprograms) are ded-
icated to communication operations used for the parallelization of the level 3
BLAS or the ScaLAPACK libraries. They can of course be used for other ap-
plications that need matrix communication inside a network. BLACS are not
a multi-usage library for every parallel application but an efficient library for
matrix computation.

In the BLACS. processes are grouped in one or two dimension grids. BLACS
provide point to point synchronous receive, broadcast and combine. There is
also routines to build, modify or to consult a grid. Processes can be enclosed in
multiple overlapping or disjoint grids, each one identified by a context. Different
release of BLACS are available on top of PVM,MPI and others. In this project.
BLACS are used on top of PVM or MPL.

2.2 The ScaLAPACK library

ScaLAPACK is a library of high-performance linear algebra routines for dis-
tributed memory message passing MIMD computers and networks of worksta-
tions supporting PVM and/or MPI . It'is a continuation of the LAPACK project.,
which designed and produced analogous software for workstations. vector su-
percomputers, and shared-memory parallel computers. Both libraries contain
routines for solving systems of linear equations, least squares problems. and
eigenvalue problems. The goals of both projects are efficiency (to run as fast
as possible), scalability (as the problem size and number of processors grow),
reliability (including error bounds), portability (across all important parallel
machines), flexibility (so users can construct new routines from well-designed
parts), and ease of use (by making the interface to LAPACK and ScaLAPACK
look as similar as possible). Many of these goals, particularly portability. are
aided by developing and promoting standards , especially for low-level commu-
nication and computation routines. LAPACK will run on any machine where
the BLAS are available. and ScaLAPACK will run on any machine where both
the BLAS and the BLACS are available.

114

VECPAR’98 - 3rd International Meeting on Vector and Parallel Processing

3 Implementation

The Thesee sequential code [8] uses the 3D panel method (also called the sin-
gularity element method), which is a fast method to calculate a 3D low speed
airflow[9]. It can be separated in 3 parts :

Part P1 The fill in of the element influence matrix from the 3D mesh. Its
complexity is O(n?) with n the mesh size (number of nodes). Each matrix
element gives the contribution of a double layer (source + vortex) singularity
distribution on facet i at the center of facet j.

Part P2 The LU decomposition of the element influence matrix and the res-
olution of the associated linear system (O(n®)), in order to calculate the
strength of each element singularity distribution.

Part P3 The speed field computation. Its complexity is (O(n?)). because the
contribution of every nodes has to be taken into account for the speed calcu-
lation at each node. Pressure is then obtained using the Bernoulli equation

Each of these parts are parallelized independently and are linked together
by the redistribution of the matrix data. For each part, the data distribution is
chosen to insure the best possible efficiency of the parallel computation.

The rest of the computation, is the acquisition of the initial data and the
presentation of the results. Software tools are uses to built the initial wing shape
and to modify it as the results of the simulation gives insight that are valuable.
The results are presented using a classical viewer showing the pressure field with
different colors and with a display of the raw data in a window.

3.1 Fill in of the influence matrix

The 3D meshing of the wing is defined by an airfoils file. i.e. by points around
the section of the wing that is parallel to the airflow, in order to define the shape
of the wing in this section, as in the NACA tables!. Thus two airfoils delimit one
strip of the wing, i.e. the narrow surface between the airfoils. The wing is then
divided in strips and each strip is divided in facets by perpendicular divisions
joining two similar points of the airfoils. This meshing is presented in Figure 1.
Notice that the points are not regularly distributed in order to have more facets.
thus more precision in the computation, in areas where the pressure gradient is
greater.

! heep: 7, www.larc.nasa.gov/ naca/

FEUP - Faculdade de Engenharia da Universidade do Porto

Undersurface 1}
Ihrection

Fig. 1. Strip of the meshing

During the computation, for each facet the whole wing must be examined
(every other facet). Since the wing is symmetrical, the computation is made with
a half-wing, thus as the dimension of the equation system is 2 x n, its size is
divided by four. The results for the whole wing are then deduced from those of
the half-wing. Let I be the number of strip, and N be the number of facets per
strip. The sequential code for the fill in of the influence matrix is made of nested

loops :

/* computation of the influence coefficient (source)x/
for (i1=1;i1<=K/2;i1++) { /*for each strip */
cstel=(i1-1)*(N+2)+1;
for (jl=cstel;jl<=(cstel+N-1);j1++) {
/* 2 loops to examine each point of the half wing */
for (i2=1;i2<=K/2;i2++) {
cste2=(i2-1)*(N+2)+1;
for(j2=cste2;j2<=(cste2+N) ; j2++)

¥

Fig. 2. Sequential code for the influence matrix fill in.

The computation of the influence coefficient M [i] for one facet is independent
of the other coefficients. The ‘external loop can be split up straightforwardly in
order to parallelize the computation on different processors. Each processor will
then compute the facets of a given number of strips. The strips are assigned to
a processor according to their number. For instance. with 4 processors and 20
strips to compute, each processor will compute five strips: nl1 strip from 1 to 5.
n°2 strip from 6 to 10 etc. ..

116

VECPAR’98 - 3rd International Meeting on Vector and Parallel Processing

Proc n° from strip n° to
K/2
1 11/21 [Nbpr.ocl
: \ - \
2 [Nbproc-] +1 l.“} * Nbprm:-|

...I_- ..]..2
n [(77 — 1)« Nl:p/:oc] +1 [n * Nt:p/roc]

Fig. 3. Simple assignation of the strips to compute to the processors.

Hence the external loop becomes:

for (it=ceil((MyPRow)#*(K/2)/((NPRow)))+1;
i1<=ceil ((MyPRow+1) *(K/2)/ (NPRow)) ;
il ++)

Fig. 4. The parallel version of the external loop corresponding to Figure 3 assignment.

The data needed for these computations (the initial meshing of the wing) are
distributed to each processor using the PDGEMR2D routine from the ScaLA-
PACK parallel library [3]. the results is then gathered with the same routine.
This routine provides the distribution of data between virtual grids of processors
with any kind of block cyclic data distribution. We used it from the initial “grid”
of size 1 x 1 witch contains the matrix to compute. to the computation virtual
grid of processors with 2 to 4 processors arranged in a 1 x 2 or 1 x 4 shape with.
for instance, a full block data distribution. Notice that this data distribution in-
troduces no other communication cost in this part because it is embarrassingly
parallel.

The second inner step of this part, the computation of doublet influence
coeficient, is realized with the same method, splitting the outer loop and using
the PDGEMR2D routine for the data repartition.

3.2 Influence matrix resolution

This part mainly consists in the resolution of a linear algebra system (Part P2).
In the sequential version of Thesee it is carried out with a simple call of the
DGESYV routine from LAPACK [1]. DGESV solves a linear equation system
with a LU factorization and then a back-solve substitution.

DGESV_(&n, &nrhs, &M[1], &lda, gipiv[1], &B[1], &1db, &info);

In this procedure DGESV solves the M x X = B system of equations and stores
the results in the B vector.

The parallel solve routine PDGESV from ScaLAPACK provides the same sys-
tem resolution with a parallel LU decomposition on block cyclically distributed

117

FEUP - Faculdade de Engenharia da Universidade do Porto

data on a virtual grid of processors. A redistribution of the data on each proces-
sor is then needed to use the parallelized resolution.

The main idea is that each processor involved in the resolution holds a sub-
matrix of the matrix M to solve. The processors of the parallel machine with
P processors are presented to the user as a linear array of process IDs. labeled
0 through (P-1). It is often more convenient while doing matrix computations
to map this 1-D array of P processes into a logical two dimensional process
mesh. or grid while doing matrix computation. This grid will have R processor
rows and C processor columns, where R x (" = G <= P. A processor can now
be referenced by its coordinates within the grid (indicated by the notation i, j,
where 0 <=7 < R, and 0 <= j < C). An example of such a mapping is shown
in Figure 5.

Proc (0,0) i Proc (0.1)

Proec (1.0) : Proc (1,1)

M B

Fig. 5. Example of redistribution with a 2 x 2 grid

A processor can be a member of several overlapping or disjoint virtual grids
during the computation, each one identified by a context.

The ScaLAPACK library uses a block cyclic data distribution on a virtual
grid of processors in order to reach a good load-balance, good computation
efficiency on arravs, and an equal memory usage between processors. The load-
balance is insure by the cyclic distribution that gives to each processor matrix
elements that are comming from “different” locations of the matrix {compared to
a classical full block decomposition). The communication efficiency is obtained
because in a cyclic distribution, the row and column shape of the matrix is
preserved, so most of communication of 1D arrays can happen without a complex
index computation {see [4. 5, 13, 2] among others). We ran tests in order to choose
the best grid shape and the best block size of the data distribution for our
problem on each of the platform.

Matrices and arrays are then wrapped by blocks in all dimensions correspond-
ing to the processor grid using the PDGEMR2D routine. Figure 3.2 illustrates
the organization of the block cyclic distribution of a 2D array on a 2D grid of
processors.

In the parallel version of . we used the following parameters for the data
distribution of the LU factorization: the block size is 32 x 32 and the processor

118

VECPAR’98 - 3rd International Meeting on Vector and Parallel Processing

Girid of Priceworx 12.3) Rlock - Mutrix
. T s
o 1 2 wrd oz ‘g’gp way| 0
o1} wa x| s am
- - T T
anf e anl as AP | [
. o

Rln ks massred b the provessors {1L0]

Fig. 6. The block cyclic data distribution of a 2D array on a 2 x 3 grid of processors.

grid shape is a 1D-grid that gave the best overall computation timings {for
further information seef10}).

o[y s [0] 0 n
e pnltu] e | n
wlnlvz] Trellols o
o]
P.0 0
M B
N N’
Contextlxl ContextNxl

Fig. 7. Data redistribution inside parallel Thesee

In the first parts of parallel , the global system matrix (M) is hold in 1 x 1
grid by the proc 0 (Contextix1). Then, it is distributed over a 1 x N'bProc grid
(ContextixN) with the PDGEMR2D?. The same operation is also realized for
the B vector. Then each processor call the PDGESV routine from ScaLAPACK
instead of DGESV from LAPACK. After this, the solution vector is distributed
on the local sub-matrix of B. A new call to PDGEMR2D is needed to gather the
solution sub-vectors from the Context1xN grid to the Contextix1 grid.

3.3 Speed computation .

The speed computation procedure (Part P3) is made of loops to compute the
speed array (S) and the potential array (Pot).
The sequential code uses two nested loops for the speed array computation:

2 Parallel Double GEneral Matrix Redistribution (from ScaLAPACK)

119

FEUP - Faculdade de Engenharia da Universidade do Porto

for(i2=1 ; i2<=K/2 ; i2++) {
for(j2=1 ; j2<=N+1 ; j2++) {

S[(i2-1)*(N+1)+j2]=...;

Fig. 8. Sequential code of the speed computation

The computation of an element of the speed array is independent from all
the others, giving us another nice embarrassingly parallel problem. The external
loop is thus split like in Part P1 and each processor is assigned a given number
of strips to compute. The computation code of the speed array is modified as
shown in Figure 9.

/* number of the first strip computed by the proc */
ideb=ceil ((MyPRow)*(K/2)/((NPRow)))+1;

/* speed computation loop */
for (i2=ceil ((MyPRow)*(K/2)/((NPRow)))+1 ;
i2<=ceil ((MyPRow+1)*(K/2)/(NPRow)) ;
i2++)
{
for(j2=1 ; j2<=N+1 ; j2++)

}

Fig. 9. Parallelization of the external loop of the Figure &

The computation of the potential array is done with the same method.

4 Performances tests

The tests were run on 2 different platforms with 3 different networks: an Ether-
net and ATM network of SUN Sparc 5 85MHz with Solaris and an Ethernet and
Myrinet network of Pentium-Pro 200MHz running Linux. The lower level com-
putation libraries BLAS were an optimized version on the SUNs and a compiled
version on the Pentium-Pros.

The efficiency of the fill in of the influence matrix and of computation of the
speed and potential arrays are roughly the same on every configuration. The code
for these parts is “embarrassingly parallel” and thus the speed-up is almost equal

120

|

VECPAR’98 - 3rd International Meeting on Vector and Parallel Processing

to the number of processor. Whereas the LU factorization which involves a lot
of communications is highly dependent of the network software and hardware.

4,1 Optimal block size

There is only slight differences between the different block sizes performances
on such small platforms with our problem sizes. However a block size of 32 x 32
was the optimal on every configuration (i.e. Ethernet, ATM, Myrinet).

We present in Table 10 the timing for the LU resolution with a system 1722 x
1792 which correspond to our production problem size.

Timings
Block size IP/Ethernet‘]IP/ATM‘lIP — BIP/Myrinet*
T x & 71.3 677 30.1
16 x 16 68.9 61.3 29.5
32 x 32 68.3 61.1 28.1
G4 x 64 74.4 66.8 34.1

) Fig. 10. Timings of the LU resolution for different block and problem sizes.

The results show the advantage of the new Pentium-Pro200 generation over
the rather old Sparc85 and gives the better block size for each configuration.

4.2 Comparison between Ethernet and ATM v

We present here the timing results of the whole computation using the different
platforms. First, we compare the networks with the same processor kind (SUN
Sparc 5) over PVM.

The gain obtained with ATM is small because the startup time of this two
network is similar to the one on Ethernet. This is the big part of the communi-
cation delay. However, the speedup obtained is not neglectable while using the
code in production because the response time is critical.

4.3 Comparison between Ethernet and Myrinet

We present here the timings obtained on the PC platform. The Myrinet network
is driven by the BIP[11,12] (Basic Interface for Parallelism) software. BIP is a

on SUN Sparc

[
2 .

on Pentium Pro
* sequential version

121

FEUP - Faculdaﬁe de Engenharia da Universidade do Porto

Timings
Svstem size|IP/Ethernet (s)IIP,/ATM (s)
4 Proc 902 x 902 16.3 13.5
2 Proc 902 x 902 18.8 16.2
1 Proc 902 x 902 20.3° 20.3°
4 Proc 1722 x 1722 68.3 61.1
2 Proc 1722 x 1722 108.9 95.9
1 Proc 1722 x 1722 131.8° 131.8°

Fig. 11. Timings of the whole computation.

Speedup
System size|IP/ Ethemet]IP_/ATM
4 Proc 902 x 902 1.24 1.50
2 Proc 902 x 902 1.07 1.25
4 Proc 1722 x 1722 1.92 2.15
2 Proc 1722 x 1722 1.21 1.37

Fig. 12. Speedup of the whole computation.

new protocol that provides a small parallel API implemented on the Myrinet
network. Other protocol layers are implemented for the classical interfaces. BIP
delivers to the application the maximal performance achievable by the hardware
using a low latency zero copy mechanism. An IP-BIP stack has been build on
top of BIP. As well, a port of MPI-CH was realized with MPI-BIP{15.12.7].
The results of parallel bhave been measured with PVM over IP/Ethernet and
PVM over IP-BIP/Myrinet and MPI over BIP/Myrinet. This gives an idea of
the portability of our code that uses library calls that are available in IP, PVM.

MPI, ...
Timings
System size|IP/Ethernet (s)|{IP-BIP/Myrinet (s)|MPI-BIP/Myrinet (s)
4 Proc 902 x 902 10.2 47 3.1
2 Proc 902 x 902 9.6 6.7 5.0
1 Proc 902 x 902 10.0° 10.0 © 10.0°
4 Proc 1722 x 1722 45.9 28.1 21.3
2 Proc 1722 x 1722 56.4 44.3 381
1 Proc 1722 x 1722 87.4° 87.4° 87.47

Fig. 13. Timings with Myrinet.

122

VECPAR'98 - 3rd International Meeting on Vector and Parallel Processing

Speedup
Svstem size|IP /Ethernet BIP-IP/Myrinet|[MPI-BIP /Myrinet
4 Proc 902 x 902 0.97 2.10 3.24
2 Proc 902 x 902 1.03 1.49 1.97
4 Proc 1722 x 1722 1.90 3.10 4.09
2 Proc 1722 x 1722 1.54 1.97 2.29

Fig. 14. Speedup with Myrinet.

First notice the advantage of the Pentium-Pro speed against the Sparc on
sequential numbers. ‘

Not surprisingly the best results are achieved with MPI-BIP that provides
a very low 9us latency for the basic send communication. The gain on large
problem size and platform is more than 50% over the Ethernet run, leading to
a super-linear speed-up.

This can be explained by a better cache hit ratio in the parallel version of the
code. As the matrix is distributed cyclically on the processors. the computation
occurs on blocked data that fits better in the cache during the LU decomposition.
leading to a better use of the processor's pipeline units. Moreover, an overlap of
the communications is done in the parallel LU decomposition. this overlap can
be (relatively) increased because the total amount of the communication cost is
greatly reduced with the Myrinet+BIP platform.

These outstanding results show that low-level access to high-speed network
is essential to achieve the best possible performances while doing parallel com-
putation.

4.4 Industrial use of the code

We ran the code on an industrial version of the PC-Myrinet cluster. the POPC
(Pile of PCs) machine designed by Matra. This architecture is a little bit slower
than the original test-bed but gives interesting results about the scalability of
the code. When using the compiled BLAS kernels, depending of the data size
of the problem. there is little interest in going further than 6 processors. When
using an optimized version of the BLAS designed for the Pentium processors, the
timings dropped down by a factor of more than 2 for the small wing and more
than 3 for the big one and there is little gain going for more than 4 processors
with the small wing and more than 8 processors for the big one. From a user
point of view, the elapse time was be decreased by a factor of 25 (from more
than a minute to 5 second). This almost an immediate answer will drastically
improve the production iterative process of the new wing shapes for the cost of
a few PCs. the use of a good BLAS kernel, and a very simple parallelization
method.

These outstanding results show that low-level access to high-speed network
is essential to achieve the best possible performances while doing parallel com-
putation.

FEUP - Faculdade de Engenharia da Universidade do Porto

System size Number of processors

1 | 2] 416] & 10
wing 902 897 [5.11]3.11]2.36]2.12 [L.79
wing 902 (optimized BLAS) |4.199 | 2.71 | 1.88 | 1.59 1 1.39 |1.31
wing 1722 75.72|38.17|21.07]14.11|12.63
wing 1722 (optimized BLAS)|25.337| 14.6 | 8.09 | 6.32 | 5.41 |5.10

Fig. 15. Timings of the whole execution on the POPC Pile of PC' machine

5 Conclusion

We described our work on the parallelization of an air flow 3D simulation that
use the singularity method that is well suited for low speed airflows.

We presented a very easy and clean way to parallelized such numerical code.
using only parallel library routines (this requires the sequential code to be written
with sequential library routines too), loop splitting and calls to a data redistri-
bution routine. The parallel code is thus portable {we ran it on 3 different . IP.
PVM. MPI) and efficient (super-linear speedup over MyTinet).

We demonstrate that low cost parallel hardware and good software can lead
to significant improvement for production codes, starting from a more than 2
minutes delay and going to 21s on a four PCs platform with Myrinet.

Our future work will consist in the automatization of this parallelization
process of numerical code using library routines with a software tool.

References

1. Anderson. Bai. Bischof. Demmel, Dongarra, Du Croz, Greenbaum. Hammarling.
’ McKenney, Ostrouchov, and Sorensen. LAPACK Users' Guide. SIAM, 1994.
http://www.netlib.org/lapack/.

E. Anderson, A. Benzoni, J. Dongarra, S. Moulton, S. Ostrouchov. B. Tourancheau.

and R. Van de geijn. LAPACK for distributed memory architecture. In Fifth SIAM

Conference on Parallel Processing for Scientific Computing. USA, 1991.

3. Blackford, Choi. Cleary, d’Azevedo, Demmel, Dhillon, Dongarra. Hammarling.
Henry. Petitet, Stanley, Walker, and Whaley. ScalAPACRK Users’ Guide. SIAM.
1997. http:/ /www.netlib.org/scalapack/.

4. F. Desprez. J.J. Dongarra. and B. Tourancheau. Performance Study of LU Fac-

torization with Low Communication Overhead on Multiprocessors. Parallel Pro-

cessing Letters, 5(2):157-169, 1995.

F. Desprez and B. Tourancheau. LOCCS: Low Overhead Communication and C'om-

putation Subroutines. Future Generation Computer Systems, 10:279-284. 1994,

6. Al Geist. Beguelin. Dongarra. Jiang. Manchek. and Sunderam. PVAL a wusers’

guide and tutorial. MIT Press. 1994. http://www.netlib.org: pvm..

Marc Herbert. Frederic Naquin, Loic Pryvlli, Bernard Tourancheau. and Roland

Westrelin. Protocole pour le ghit/s en reseau local: 1'experience myrinet. Caleula-

teurs Paralleles. Reseaur et Systemes Repartis, 1998.

[

Ut

124

10.

11.

13.

14.

15.

VECPAR'98 - 3rd International Meeting on Vector and Parallel Processing

L. Giraudeau Georges Perrot S. Petit and B. Tourancheau. 3-d air flow simulation
software for paragliders. Technical Report 96-35, LIP-ENS Lvon. 69364 Lyon.
France, 1996.

J. Katz & A. Plotkin. Low-speed Aerodynamics From Wing Theory to Panel Meth-
ods. MCGraw-Hill. Inc., 1991.

L. Prylli and B. Tourancheau. Efficient block cyclic array redistribution. Journal
of Parallel and Distributed Computing, (45):63-72. 1997. :

Loic Prvlli and Bernard Tourancheau. Protocol design for high performance net-
workin g: Myrinet experience. Technical Report 97-22, LIP-ENS Lyon. 69364 Lyon.
France. 1997.

9. Loic Prvlli and Bernard Tourancheau. Bip: a new protocol designed for high perfor-

mance networking on myrinet. In Workshop PC-NOW, IPPS/SPDP98, Orlando,
USA, 1998.

Y. Robert. B. Tourancheau. and G. Villard. Data allocation strategies for the gauss
and jordan algorithms on a ring of processors. Information Processing Letters.
31:21-29, 1989.

M. Snir, S.W. Otto, S. Huss-Lederman, D.W. Walker, and J.J. Dongarra. Mpi:
The complete reference. 1996. http:// www.netlib.org/mpi/.

Roland Westrelin. Réseaux haut débit et calcul paralléle: étude de myrinet. Mas-
ter's thesis, LHPC, CPE-Lyon. 1997.

125

FEUP - Faculdade de Engenharia da Universidade do Porto

126

VECPAR'98 - 3rd International Meeting on Vector and Parallel Processing

2D Pseudo-Spectral Parallel Navier-Stokes
Simulations for Compressible Subsonic Flows

Elisabeth Fournier! and Serge Gauthier!

CEA /Bruyeres-le-Chatel, BP 12,
91680 Bruyeres-le-Chatel Cedex. FRANCE
Elisabeth.Fournier@bruyeres.cea.fr,
Serge.Gauthier@bruyeres.cea.fr

Abstract. A 2D Fourier-Chebyshev pseudo-spectral method for the full
Navier-Stokes equations with 2 dynamical domain decomposition tech-
nique has been parallelized on a SPMD machine, a CRAY-T3E. The
parallelism is grounded on the distribution of the data among processors
and on the simultaneous computations on each subdomain. The SHMEM
paradigm is used for communication between processors. Comparisons
between the vectorial and the parallel versions of spectral derivatives
with Fourier and Chebyshev expansions are presented. Performances
versus the number of processors and collocation points are also stud-
ied. Validation of the code has been performed by simulating a sub-
sonic Kelvin-Helmholtz instability and comparing with results obtained
on vectorial machines. Performances for two different configurations, the
Kelvin-Helmholtz and Rayleigh-Taylor flows, are also presented.

1 Numerical Method

In order to study transition to turbulence, very accurate numerical schemes
and large resolution are required [2]. With this aim in view, a sophisticated 2D
dynamical multidomain pseudo-spectral code has been developed to simulate
viscous compressible flows, and especially the Kelvin-Helmholtz and Rayleigh-
Taylor instabilities. The numerical method solves the full 2D Navier-Stokes equa-
tions. It uses a Fourier-Chebyshev expansion. The features of our method are as
follows [1]:

1. Time marching is done with a semi-implicit third order Runge-Kutta scheme
in a low-storage formulation. The advective terms are treated explicitly and
all diffusion terms are handled implicitly. Since transport coefficients are
constant, thé implicit stage is performed in the Fourier space by means of
a Chebyshev iterative scheme. This procedure allows us to use larger time
steps. .

9. The vertical direction is decomposed into non-overlapping subdomains. Den-
sity is matched with a simple upwind procedure. Velocities and temperature
are handled with the influence matrix method which reflects the continuity
of the function and its first normal derivative at the interface.

127

FEUP - Faculdade de Engenharia da Universidade do Porto

3. In each subdomain, a self-adaptive transformation of a coordinate is used.
Since strong gradients may occur in the middle of the subdomain. a transfor-
mation of coordinate is used to bring the mesh points in the vicinity of the
gradient. These mappings and the location of the interfaces between subdo-
mains need to be self-adaptive because gradients move in time. Indeed, this

- is an interesting feature of this numerical method to automatically optimize
the locations of the interfaces by minimizing the H2 norm.

2 The Parallelization Method

At first, the numerical code was running on a vectorial computer, a CRAY-YMP.
Because the use of this code was limited by the memory size of the computer
(the resolution was also restricted) and the time required for a whole simula-
tion, the unique solution was to develop a parallel version for 2D and later 3D
calculations. In our case, the parallelization began on a CRAY-T3D, and then
finished on a CRAY-T3E. This type of machines offers two advantages : it al-
lows us to increase the total available memory and simultaneously to decrease
the cost in CPU time. For example, the maximum allocated memory for an user
is 168 x 16 Mwords on a CRAY-T3E with 168 processor elements, whereas only
512 Mwords are available on a CRAY-T90 (with 24 processors, and sometimes
24 users together!). This new version permits us to execute more voluminous
calculations. tlhiat means to increase precision and also resolution, i.e., the total
number of mesh points. The CRAY-T3E allows only SIMD programming (Single
Program Multiple Data). that means that a single program is forked on every
processor element (PE), which computes with its own data.

2.1 Domain Decomposition

The numerical method was particularly adapted to parallelism, because it uses
a domain decomposition method. Since the physical domain is divided into a
little number of subdomains (typically 3 to 9) in one direction (the vertical :-
direction), the parallelization procedure concerns the distribution of the subdo-
mains and their physical associated quantities (velocities, density, temperature.
pressure, energy ...) on groups of processors. Subdomains are shared out among
processors. So, each processor is assigned to a fixed subdomain.

We can represent each physical quantity in a form of a 2D matrix and sup-
pose that columns contain all z-data at fixed :-value, and rows all =-data at
fixed z-value. This representation leads us to distribute all columns of a global
matrix on group of processors. So. each processor contains a little number of
whole columns. In the code. Fast Fourier Transform (FFT) is performed in the
r-direction (a-derivative). It can be easily parallelized : each processor performs
a few FFTs. while all processors are running in parallel. Serial computations

128

VECPAR’98 - 3rd International Meeting on Vector and Parallel Processing

are transformed into parallel computations. Another current operation is the z-
derivative through a matrix-matrix product. Because processors do not possess
in their local memory the data needed for this product or any other global opera-
tion, data transfer is required, but it suffers from too much communication cost.
The matrix-matrix product is mostly used in the code kernel, that is the reason
why we tried to minimize this cost, by searching the fastest way to transpose a
distributed matrix, for instance.

2.2 Strategy for the Parallelization

Choice between PVM and SHMEM The numerical method requires data
transfer between processors, i.e., communication, for matrix operations, such as
matrix transposition or the research of a global matrix minimum or maximum,
and for matching physical quantities at the domain interfaces. To minimize over-
head time due to communication, we looked into the use of two paradigms, PVM
and SHMEM. Two criteria were taken into account : portability and rapidity.

First, PVM (Parallel Virtual Machine), a message passing library, was used
because of its portability. After a series of tests that revealed lack of efficiency, we
added SHMEM (Shared Memory Access Library) instructions with the object to
decrease execution time. The SHMEM routines are data passing library routines,
which can be used as a replacement for message passing routines. Bandwidth is
higher with SHMEM and latency time is lower. In other words, that means that
a larger number of elements is transfered between processors within a shorter
time. To be precise, latency time is only 1.85us on a CRAY-T3D and 1.75us on a
CRAY-TS3E for the shmem—put, against respectively 34us and 12us for PVM on
the CRAY-T3D and T3E. Bandwidth is about 120 MBytes/s for SHMEM with-
out stream buffers and only 26 MBytes/s for PVM. SHMEM allows to transfer 5
times more elements in a time 6 times shorter. In conclusion, these routines min-
imize the overhead associated with data passing requests, maximize bandwidth
and minimize data latency.

We compared execution times for a special problem that is characteristic in
our resolution method : the matrix transposition. In the code kernel, a FFT is
executed first on each processor. Then the global matrix has to be transposed,
before the z-derivative is computed through a matrix-matrix product. This ma-
trix transposition requires data transfers. Because the vast majority of the time
is spent in this type of operations, total execution times for a FFT, a matrix
transposition and a matrix-matrix product have been compared with both of
paradigms, PVM and SHMEM.

In Fig.1, comparison between times ratio spent in the code kernel using PVM
or SHMEM shows clearly that SHMEM is the fastest : by using the shmem-iput
or shmem-ixput {variants of shmem-iput), the time on the CRAY-T3D is at

129

FEUP - Faculdade de Engenharia da Universidade do Porto

Time ratio YMP/T3D

SHMEM iput PVM
Communication libraries

Fig. 1. Ratios of CPU time YMP/T3D vs. the paradigm used, PVM or SHMEM.

least. 6 times shorter than with PVM.

Finally, we chose to use only SHMEM because of its efficiency. A next version
of MPI-2, a Message Passing Interface, which becomes a standard, will include
SHMEM instructions and make easier portability. So, in the near future, both
of important criteria will be respected.

Difficulties due to the Implementation of SHMEM SHMEM is a low
level library. As a result, it is more efficient than PVM. But it is more difficult
to implement SHMEM in a code. Parallelization of a code with SHMEM requires
to get in some hardware features. During the parallelization, the programmer
has to be very careful because of the following reasons.

On one hand, the data to transfer have usually to be symmetric, that means
statically in memory, and more precisely, an object has to be associated to the
same address on every PE. This is possible by using a common storage area, or
using special directives like {CDIRS SYMMETRIC.

A data object is called symmetric, if its local and remote addresses have a known
relationship. This is one of the reasons why one has to be very careful with the
use of dynamically allocated data objects.

130

VECPAR'98 - 3rd International Meeting on Vector and Parallel Processing

The shmem-put and shmem-get instructions copy data from memory directly

into memory : with the shmem-put, data are copied from the local processor
memory into the remote processor memory, without advertising the remote pro-
cessor. The shmem-get routine copies data from the remote processor memory
into its local memory.
The shmem-put call presents some disadvantages: on the CRAY-T3D, cache co-
herency is only ensured by flushing the cache, because the shmem-put routine
brings up to date only central memory and not the cache of the remote proces-
sor. That is why flushing the cache is very important: otherwise, on the remote
processor, cache and memory could contain two different values for the same
data! However cache coherency is guaranteed on the CRAY-T3E.

On the other hand, order of data transfered by a shmem-put is ensured only
by calling the shmem-fence routine. Furthermore the shmem-put function re-
turns before the end of transfer and poses the problem of asynchronicity. More
synchronization between processors has to be explicit and is placed upon the
programmer through shmem-barrier routines.

All these reasons lead us to use only the shmem-get routine, instead of the
shmem-put, with the intention of avoiding some of these constraints. Whereas
the shmem-put command is faster than the shmem-get one on the CRAY-T3D,
performances of both are similar on the CRAY-T3E.

In addition to this, some other collective instructions such as shmem-broadcast
have been also utilized. With the aim to minimize communication time, another
solution is to use PBLAS, a parallel library, which optimizes a lot of operations,
like matrix and vector operations. This is under investigation.

83 Tests on the Code Kernel

In a full typical simulation, most of the time is spent in FFT computations,
matrix-matrix products and matrix-vector products. To show the efficiency of
the parallel version with regard to the vectorial one, we compare the execution
times for the code kernel. Such a kernel is defined, on a vectorial computer, as
a derivative in the z-direction through a FFT followed by a derivative in the
z-direction with a matrix-matrix product. This sequence becomes on a MPP
machine a z-derivative (with a FFT), a local matrix transposition and then a
z-derivative (with a matrix-matrix product). We applied this kind of calculation
to an arbitrary function and measured the total execution time. Each test case
has been run 1000 times and the mean value has been calculated.

We carried out a series of tests, by varying the number of mesh points in
hoth directions on one hand, and the number of processors on the other hand.
The figures above show the mean time ratio between the CRAY-YMP/T90 and
CRAY-T3D/T3E times.

131

FEUP - Faculdade de Engenharia da Universidad: do Porto

Time ratic

GYMP30
mTeoTIe

Fig.2. Ratios of CPU time YMP/T3D and T90/T3E vs. the numbser of PEs. The
number of subdomains is equal to 5. The resolution is 50 z-points in exch subdomzin
and 128 z-points.

Time ratlc

DYMeT30
mTOOTIE

Fig. 3. Ratios of CPU time YMP/T3D and T90/T3E vs. tle number £ z-points. The

number of subdomains is equal to 5. The resolution is 256 s-points.

Figure 2 shows the evolution of this ratio as a fuzction of the number of
processors. Figure 3 represents the influence of matrix sizes on tae time raio.
This ratio increases with the number of z-points. At a fxed numter of z-points.

VECPAR’98 - 3rd International Meeting on Vector and Parallel Processing

GFlops ona T3E

5

6
Number of

8
Processors

10 12 14

Fig.4. Performance in terms of GigaFlops on a T3E vs. the number of processors for

9 subdomains and 51 z-points in each.

GFlops on a T3E

18

T T
‘Nx=64' -o-
"Nx=128" --+-
"Nx=256" - &
‘Nx=512" -%--
'Nx=1024" -4 -

L

35 40

45 50 55
Nz (of each subdomain)

60 65 70

Fig.5. Performance in terms of GigaFlops on a T3E vs. the number of z-points. The
number of r-points is 64, 128, 256. 512 and 1024 respectively.

it grows up with the number of z-points. Moreover, we measured performance. in
terms of GigaFlops. in each case. In this case, the physical domain is divided into
9 subdomains with 51 Chebyshev points in the z-direction. Figure 4 represents

133

FEUP - Faculdade de Engenharia da Universidade do Porto

~

the performance obtained on the CRAY-T3E by varying the number of PEs.
One can remark that performance increases almost linearly with the number of
PEs up to 80 and then saturates, probably because the number of columns in
matrix-matrix product is relatively small, for such a number of PEs. In Fig. 5.
the curves show the performance, measured in GigaFlops. versus the number
of z-points (called N.). Each curve corresponds to a fixed number of z-points
(called N,). Performance increases with N, , but not regularly with N, and then
slightly decreases: the performance maximum is reached for Ny = 512. We notice
that discrepancies between N, = 256, 512 and 1024 are very small.

4 The Validation of the Parallelization

As first validation of the whole code, we simulated the Kelvin-Helmholtz flow.
Its basic state. written in a non-dimensional form is:

w= %tanh(?:),v: 0,T=14+ 7;“’1\49(1 —(2u)?),P=1 (1)

with 0 < ¢ < L and —L. < : < L.. Neumann boundary conditions are applied
to the horizontal velocity and the temperature and Dirichlet conditions to the
vertical velocity.

28 T T T T T T T

'YMP Nx=72 N2=3"51" -o—
'T3E 52 PEs Nx=72 N2=3"51" -~--
26 F B} 'T3E 52 PEs Nx=512 Nz=3'85' & -

24 | .

22 - B

Vorticily

Tme

Fig. 6. Evolution in time of the vorticity for the Kelvin-Helmholtz flow. The simulation
with the highest resolution is slightly different.

134

VECPAR'98 - 3rd International Meeting on Vector and Parallel Processing

The validation of the parallelization is based on the superposition of both
results of the vectorial and parallel versions for a Kelvin-Helmholtz instability
[1]. Indeed, we simulated, on both types of machines, the Kelvin-Helmholtz flow
with 72 z-points and 155 z-points for 3 subdomains on 52 processors. In Fig.
6. curves represent the evolution in time of the vorticity. A simulation with a
higher resolution with 512 z-points and 255 z-points with 5 subdomains on 86
processors has been also performed. This result is very similar to those obtained
with 3 subdomains and valid the parallel version.

In Table 1. we compare the Total Execution Time (TET). This time de-
creases as the number of processors grows up, but this variation is not linear.
By comparing the time for the whole simulation on CRAY-YMP and on CRAY-
T3E for the Kelvin-Helmholtz instability, we notice that this time is three times
shorter on the parallel machine. The efficiency E of a parallel algorithm for a
proble instance of size N using P processors is defined by the formula:

T1(N) .
E(P,N)_P*TP(N) (2)
where T1(N) and Tp(N) are respectively the times needed for one processor
and P processors.
The efficiency obtained with the whole code is about 0.51 for 10 PEs. At this
time. the £90 -g compiling option has been used and have slowed down the exe-
cution. This can explain a relative bad performance. In this case. communication
time is not negligible with respect to the computational time. In addition, the
number of mesh points is too small to reach high efficiency.

T3E 10 PEs |I3E 52 PEs |[YMP 1 PE [T3E 1 PE
Total Execution Time in 5| 0.308 107 | 0.183 10° | 0.474 107 |0.179 107
Time/node/cycle (in pus) 208 148 406 1530

Efficiency 0.51 0.21 . ,

Table 1. Total Execution Time, time per node per cycle and efficiency for various
configurations for the Kelvin-Helmholtz flow.

We also simulated the Rayleigh-Taylor flow. For these simulations. 128 -
points and 5 or 7 subdomains, with 51 z-points in each, were used.
Table 2 contains the times obtained for various configurations for the Rayleigh-
Taylor instability. For 5 subdomains (128*255), we obtained an efficiency equal
to 0.61. by using the default compiling options. Performances are much better
than for the Kelvin-Helmholtz flow. The first reason is the higher number of

135

FEUP - Faculdade de Engenharia da Universidade do Porto

T3E 86 PEs |[T3E 86 PEs |T3E 120 PEs [YMP 1 PE |T3E 1 PE
N, =128 N: =512 Ny =128 Ny =128 | N, =128
N. =255 N; =255 N, =357 N. =255 |N.=255
Time/node/cycle 39.9 36.4 63.8 400 2085
(in ps)
Efficiency 0.61

Table 2. Total Execution Time, time per node per cyvcle and efficiency for various
configurations for the Rayleigh-Taylor flow.

z-points and processors. Because a greater number of calculations are performed
within the same time, the TET decreases. As second reason, we can involve the
optimization of the parallelization by in-lining, reducing the number of commu-
nications, of arrays... The best time obtained for the CRAY-T3E decreases by a
factor of 10 in comparison with the CRAY-YMP.

We can expect better performances and efficiency by using other compiling
options and further improvements (for instance with the use of PBLAS).

5 Conclusion

We have obtained some results with a parallel version of a 2D pseudo-spectral
code using a dynamical domain decomposition method. It solves the full Navier-
Stokes equations. The elliptic problems coming from the diffusive terms are
solved iteratively in the Fourier space.

The paradigm used for the parallelization is SHMEM. because of its effi-
ciency, in comparison with PVM. '
The validation of the parallel version is based, for the Kelvin-Helmholtz insta-
bility. on the good superposition of results, that represent the evolution in time
of vorticity.
The best efficiency obtained today is equal to 0.61 and the best time per node
per cycle is 39.9us. These performances could be improved.

This work is a successful example of a parallelized pseudo-spectral Fourier-
Chebyshev method with a dvnamical domain decomposition technique. We are
interested in simulation with very high resolution and are applying this method
to the Rayleigh-Taylor instability. This sophisticated numerical method coupled
with the parallelization will allow us to study in more detail interactions between
different modes.[2]

136

VECPAR'98 - 3rd International Meeting on Vector and Parallel Processing

References

1. Renaud F. and Gauthier S.: A Dynamical Pseudo-Spectral Domain Decomposition
Technique: Application to Viscous Compressible Flows. J. Comput. Phys. 131 (1997)
89-108

 Gauthier S., Guillard H., Lumpp T., Male J.M., Peyret R. and Renaud F.: A Spec-
tral Domain Decomposition Technique with Moving Interfaces for Viscous Com-
pressible Flows. Oral communication at ECCOMAS 96. September 1996. Paris.

3. Fournier E. and Gauthier S.: Parallelization of a 2D pseudo-spectral dynamical

domain decomposition method for the full Navier-Stokes equations. 6th IWCPTM
in Marseille, June 1997.

Key words
Parallelism - Pseudo-spectral methods - Domain decomposition - Kelvin-Helmholtz

and Rayleigh-Taylor Instabilities.

137

FEUP - Faculdade de Engenharia da Universidade do Porto

138

VECPAR'98 - 3rd International Meeting on Vector and Parallel Processing

A Unified Approach to Parallel Block-Jacobi
Methods for the Symmetric Eigenvalue Problem”

D. Giménez!*, V. Hernandez”™* and A. M. Vidal#**

! Departamento de Informética y Sistemas. Univ de Murcia.
Aptdo 4021. 30001 Murcia, Spain. (domingo@dif.um.es)
2 Dpto. de Sistemas Informaticos y Computacién. Univ Politécnica de Valencia
Aptdo 22012. 46071 Valencia. Spain. {vhernand,avidal}@dsic.upv.es

Abstract. In this paper we present a unified approach to the design of
different parallel block-Jacobi methods for solving the Symmetric Eigen-
value Problem. The problem can be solved designing a logical algorithm
by considering the matrices divided into square blocks, and considering
each block as a process. Finally, the processes of the logical algorithm
are mapped on the processors to obtain an algorithm for a particular
svstem. Algorithms designed in this way for ring, square mesh and tri-
angular mesh topologies are theoretically compared.

1 Introduction

The Symmetric Eigenvalue Problem appears in many applications in science and
engineering. and in some cases the problems are of large dimension with high
computational cost. therefore it might be better to solve in parallel.

Different approaches can be utilized to solve the Symmetric Eigenvalue Prob-
lem on multicomputers:

— The initial matrix can be reduced to condensed form (tridiagonal) and then
the reduced problem solved. This is the approach in ScaLAPACK [1].

_ A Jacobi method can be used taking advantage of the high level of parallelism
of the method to obtain high performance on multicomputers. In addition.
the design of block methods allows us to reduce the communications and to
use the memory hierarchy better. Different block-Jacobi methods have been
designed to solve the Symmetric Eigenvalue Problem or related problems on
multicomputers [2, 3, 4. 5].

* The experiments have been performed on the 512 node Paragon on the ('SCC parallel
computer system operated by Caltech on behalf of the Concurrent Supercomputing
Clonsortium (access to this facility was provided by the PRISM project).

** Partially supported by Comisién Interministerial de Ciencia v Tecnologia. project
T1C'96-1062-C03-02. and Consejerfa de Cultura y Educacién de Murcia. Direccién
General de Universidades, project COM-18/96 MAT. _

=** Partially supported by Comisién Interministerial de Ciencia y Tecnologia, project
T1C96-1062-C03-01.

139

FEUP - Faculdade de Engenharia da Universidade do Porto

— There are other type of methods in which high performance is obtained
because most of the computation is in matrix-matrix multiplications. which
can be optimised both in shared or distributed memory multiprocessors.
Methods of that type are those based in spectral division [6. 7. &] or the
Yau-Lu method [9].

In this paper a unified approach to the design of parallel block-Jacobi meth-
ods is analized.

2 A sequential.block-Jacobi method

Jacobi methods work by constructing a matrix sequence {A;} by means of
A1 = QAQ . 1=1,2,... where Ay = A. and Q; is a plane-rotation that an-
nihilates a pair of nondiagonal elements of matrix 4;. A cyclic method works by
making successive sweeps until some convergence criterion is fulfilled. A sweep
consists of successively nullifying the n(n — 1)/2 nondiagonal elements in the
lower-triangular part of the matrix. The different ways of choosing pairs (/.)
have given rise to different versions of the method. The odd-even order will be
used. because it simplifies a block based implementation of the sequential al-
gorithm. and allows parallelization. With n = 8, numbering indices from 1 to 8,
and initially grouping the indices in pairs {(1,2},(3,4), (5.6), (7,8)}. the sets of
pairs of indices are obtained as follows:

k=1{(1,2),(3,4),(5.6),(7.8)}
k=2 {2,(1,4),(3.6),(5.8),7}
k=3{(2.4),(1,6),(3,8),(5,7)}
k=4 {4,(2,6),(1,8),(3.7).5}
k=15 {(4,6).(2,8),(1.7).(3,5)}
k=6 {6.(4,8),(2,7).(1,5),3}
k=7 {(6,8),(4, 7)’(2v5)'(113)}
k=8 {8(6,7),(4,5),(2,3),1}

When the method converges we have D = @QxQk-1...Q:14Q" ... QL _, Q%
and the eigenvalues are the diagonal elements of matrix D and the eigenvectors
are the rows of the product QrQr—-1...Q1.

The method works over the matrix A and a matrix IV where the rotations are
accumulated. Matrix 17 is initially the identity matrix. To obtain an algorithm

working by blocks both matrices A and V' are divided into columns and rows of

square blocks of size s x s. These blocks are grouped to obtain bigger blocks of
size 2sk x 2sk.

The scheme of an algorithm by blocks is shown in figure 1.

In each block the algorithm works by making a sweep over the elements in
the block. Blocks corresponding to the first Jacobi set are considered to have
size 2s x 2s, adding to each block the two adjacent diagonal blocks. A sweep is
performed covering all elements in these blocks and accumulating the rotations
to form a matrix @ of size 2s x 2s. Finally, the corresponding columns and rows

140

VECPAR'98 - 3rd International Meeting on Vector and Parallel Processing

WHILE convergence not reached DO
FOR every pair (i.j) of indices in a sweep Do
perform a sweep on the block of size 2s x 25 formed
by the blocks of size s x s, Ai, Ay and A,
accumulating the rotations on a matrix Q of size 2s x Is
update matrices A and V' performing matrix-matrix
multiplications
ENDFOR
ENDWHILE

Fig. 1. Basic block-Jacobi iteration.

of blocks of size 2s x 2s of matrix A and the rows of blocks of matrix 17 are
updated using Q.

After completing a set of blocked rotations, a swap of column and row blocks
is performed. This brings the next blocks of size s x s to be zeroed to the
subdiagonal, and the process continues nullifying elements on the subdiagonal
blocks.

Because the sweeps over each block are performed using level-1 BLAS, and
matrices A and V can be updated using level-3 BLAS, the cost of the algorithm

180

8kan® + (12k; — 16k3) n”s + 8ksns® flops. (1)

when computing eigenvalues and eigenvectors. In this formula k; and ks rep-
resent the execution time to perform a floating point operation using level-1 or
level-3 BLAS. respectively.

3 A logical parallel block-Jacobi method

To design a parallel algorithm, what we must do first is to decide the distribu-
tion of data to the processors. This distribution and the movement of data in
the matrices determine the necessities of memory and data transference on a
distributed system. We begin analyzing these necessities considering processes
but not processors. obtaining a logical parallel algorithm.

Each one of the blocks of size 2sk x 2sk is considered as a process and will have
a particular necessity of memory. At least it needs memory to store the initial
blocks. but some additional memory is necessary to store data in sucessive steps
of the execution.

A scheme of the method is shown in figure 2. The method using this scheme
is briefly explained below.

141

FEUP - Faculdade de Engenharia da Universidade do Porto

On each process:
WHILE convergence not reached DO
FOR every Jacobi set in a sweep DO
perform sweeps on the blocks of size 25 x s
corresponding to indices associated to the processor,
accumulating the rotations
broadcast the rotation matrices
update the part of matrices A and V' associated
to the process, performing matrix-matrix multiplications
transfer rows and columns of blocks of A and rows
of blocks of V
ENDFOR
ENDWHILE

Fig. 2. Basic parallel block-Jacobi iteration.

FEach sweep is divided into a number of steps corresponding each step to a
Jacobi set.

For each Jacobi set the rotations matrices can be computed in parallel, but
working only processes associated to blocks 2sk x 2sk of the main diagonal of
4. On these processes a sweep is performed on each one of the blocks it contains
corresponding to the Jacobi set in use, and the rotations on each block are
accumulated on a rotations matrix of size 2s x 2s.

After the computation of the rotations matrices. they are sent to the other
processes corresponding to blocks in the same row and columm in the matrix 4.
and the same row in the matrix V. And then the processes can update the part
of 4 or ¥ they contain.

In order to obtain the new grouping of data according to the next Jacobi set
it is necessary to perform a movement of data in the matrix, and that implies
a data transference between processes and additional necessities of memory. It
is illustrated in figure 3. where & = 16, the rows and columns of blocks are
numbered from 0 to 15, and the occupation of memory on an odd and an even
step is shown. In the figure blocks containing data are marked with x.

Thus. to store a block of matrix 4 it is necessary to reserve a memory of size
(2sk + s) x (2sk + s), and to store a block of 17 is necessary a memory of size
(2sk + s) x 2sk.

4 Parallel block-Jacobi methods

To obtain parallel algorithms it is necessary to assign each logical process to a
processor, and this assignation must be in such a way that the work is balanced.

142

VECPAR'98 - 3rd International Meeting on Vector and Parallel Processing

A V
J
pozmmn|
prosd
|
it 1 1 -
2<
b P o <
o 2
XX
jEEES |mEEE |
b O 2020303
& B [] ZOZ0Z0X
ococoam u u
XIXIXIX)
EEEER HNEgREEN
SO T
1
a)
A V
prozd BAXIX
XX] e oz
b X ZoZ0%
£] <] XIXIX]
X DX
]
R XX
H S
b
X XX [
- Tk 1|
H a
C I
rozezozoz
1

Fig. 3. Storage of data: a) on an odd step, b) on an even step.

The most costly part of the algorithm is the updating of matrices A and V' (that
produces the cost of order O (n3)). To assign the datain a balanced way it suffices
to balance the updating of the matrices only. In the updating of non-diagonal
blocks of matrix 4, 72 x 53 data are updated pre- and post-multiplying by
rotations matrices. In the updating of diagonal blocks only elements in the lower
triangular part of the matrix are updated pre- and post-multiplying by rotations
matrices. And in the updating of matrix V, 54 X 7 data are updated but only
pre-multiplying by rotations matrices. So. we can see the volume of computation
on the updating of matrices on processes corresponding to a non-diagonal block
of matrix .4 is twice that of processes corresponding to a block of 1" or a diagonal

block of 4. This must be had in mind when designing parallel algorithms.

An algorithm for a ring Considering ¢ = 77 and a ring with p = € pro-
cessors. Pa. Py. ... Po_y. a balanced algorithm can be obtained assigning to each

processor P;. rows i and ¢ — 1 — i of matrices A and V. So. each processor F;
contains blocks A;;. with 0 < j <. Ago1-i 5. with 0 < j < ¢—1—14 and 13

143

FEUP - Faculdade de Engenharia da Universidade do Porto

A v
0 H 1

! &
P S
1 1 I
P S ae :
1B T lal 1
P =
0 11l HEEE :

a)
A \%

T O

b)

Fig. 4. Storage of data: a) on an odd step, b) on an even step. Algorithm for ring
topology.

and Vy_i_;; with0<j<g.

To save memory and to improve computation some of the processes in the
logical method can be grouped, obtaining on each processor four logical pro-
cesses, corresponding to the four rows of blocks of matrices 4 and 17 contained
in the processor. In figure 4 the distribution of data and the memory reserved
are shown, for p = 2 and 2 = 16. In that way. (2sk +5)(2n + 25k +25) possitions
of memory are reserved on each processor.

The arithmetic cost per sweep when computing eigenvalues and eigenvectors
is:

3 2 2

81«37-;_)— + (12K — 8kg) = =

+ 12k,

flops. (2)

P

And the cost per sweep of the communications is:

144

VECPAR'98 - 3rd International Meeting on Vector and Parallel Processing

\7

Fig. 5. Folding the matrices in a square mesh topology.

\ 2n?
,B(p+3)-g-+‘r(8n'+2ns— ;) , (3)

where 3 represents the start-up time, and 7 the time to send a double precision
number.

An algorithm for a square mesh In a square mesh. a way to obtain a bal-
anced distribution of the work is to fold the matrices A and 1" in the system of
processors. such as is shown in figure 5, where a square mesh with four processors
is considered.
~ To processor P;; are assigned the next blocks: from matrix 4 block 4 544 ;.
if 7 S \/}_7-—1—j block A P11, and if ¢ 2 \/ﬁ—l—j block A\/]_*+1',2\/1—’—1—j; and
from matrix ¥ blocks 17 744 5. Vi/p-1-ijs Vptia/F-1-i and V511 2/5-1-j-
The memory reserved on each processor in the main antidiagonal 1is
(2sk +s)(14sk +3s), and in each one of the other processors (2sk +s)(12sk+2s).
This data distribution produces an inbalance in the computation of the ro-
tations matrices, because only processors in the main antidiagonal of processors
work in the sweeps over blocks in the diagonal of matrix 4. On the other hand.
this inbalance allows us to overlap computations and communications.
The arithmetic cost per sweep when computing eigenvalues and eigenvectors

3 2 2
8kt & (12k; + 2ka) == + 12k 7= flops. (4)
p VP
And the cost per sweep of the communications is:
;3(\/_7+4)n +m? |2+ ! (5)
. s e . 2
p+4)g 7

Comparing equations 4 and 2 we can see the arithmetic cost is lower in the
algorithm for a ring, but only in the terms of lower order. Furthermore. commu-
nications and computations can be overlapped in some parts of the algorithm
for a mesh.

145

FEUP - Faculdade de Engenharia da Universidade do Porto

] i)] (]

EISISIE
5O} |e5U| | O[] 2T
EEEED
e ==

[l [[l [

(][] [
[=
E

Fig. 6. The storage of matrices in a triangular mesh topology.

An algorithm for a triangular mesh In a triangular mesh, matrix A can
be assigned to the processors in an obvious way. and matrix V" can be assigned
folding the upper triangular part of the matrix over the lower triangular part
(figure 6).

To processor P;j (i > j) are assigned the blocks 4;;, V;; and 1};. The memory
reserved on each processor in the main diagonal is (2sk + s)(4sk + s), and in
each one of the other processors (2sk + s)(6sk + s).

Only processors in the main diagonal work in the sweeps over blocks in the
diagonal of matrix A. In this case, as happens in a square mesh, the inbalance
allows us to overlap computations and communications.

If we call » to the number of rows and columns in the processors system. »
and p are related by the formula » = -ﬁ@‘ and the arithmetic cost per
sweep of the algorithm when computing eigenvalues and eigenvectors is:

3 2 2
16k3%+(12k1 + 2k3) ﬁrﬁ + 12k1"f Flops. (6)
And the cost per sweep of the communications is:
n . 6n? -
13(7'+{)—q—+‘r 2n’+—7_—+4,ns . (7)

The value of r is a little less than \/Zp. Thus, the arithmetic cost of this
algorithm is worse than that of the algorithm for a square mesh. and the same
happens with the cost of communications. But when p increases the arithmetic
costs tend to be equal, and the algorithm for triangular mesh is better than the
algorithm for a square mesh. due to a more regular distribution of data.

5 Comparison

Comparing the theoretical costs of the algorithms studied it is possible to con-
clude the algorithm for a ring is the best and the algorithm for a triangular mesh

146

VECPAR’98 - 3rd International Meeting on Vector and Parallel Processing

Table 1. Theoretical costs per sweep of the different parts of the algorithms.

comp. rotationsjupdate matrices broadcast trans. data
¥ n® _gn’s gn’s ns? _ 1)z e,
ring SP = 12% f12 = (p 1)_:;3 423
(2n2 — 23,]:) T (6172 + '.Zns) T
3 7 4 ‘
s . n° L gn’s n7s 4 1onst n n g
sq. mesh 8p+.- = 12\/54-1- = VPEB 45°Li
m? 7o
,] T TisT
tr. mesh 16%;_.— +25= 1222 4 122 rop 23
2’y (61’;- + 4ns> T

is the worst. This can be true when using a small number of processors, but it
is just the opposite when the number of processors and the matrix size increase,
due to the overlapping of computations and communications on the algorithms
for a mesh.

Some attention has been paid to the optimization of parallel Jacobi meth-
ods by overlapping communication and computation [10, 11], and in the mesh
algorithms here analysed the inbalance in the computation of rotation matrices
malkes possible this overlapping. Adding the arithmetic and the communication
costs in equations 2 and 3, 4 and 5, and 6 and 7, the total cost per sweep of the
algorithms for ring. square mesh and triangular mesh, respectively, can be estin-
ated: but these times have been obtained without regard to the overlapping of
computation and communication. In the algorithm for a ring there is practically
no overlapping because the computation of rotations is balanced. and after the
computation of the rotation matrices each processor is involved in the broad-
cast. and the updating of matrices begins only after the broadcast finishes. But
in the algorithms for mesh the computation of rotations is performed only by
the processors in the main diagonal or antidiagonal in the system of processors.
and this makes the overlapping possible.

To compare in more detail the three methods, in table 1 the costs per sweep
of each part of the algorithms are shown. ,

The three algorithms have an isoefficiency function f(n) = p. but the al-
gorithms for mesh are more scalable n practice. The value of the isoefficiency
function appears from the term corresponding to rotations broadcast. which has
a cost O (np). but in the algorithm for a ring this is the real cost. because the
matrices 4 and 17 can not be updated before the rotations have been broadcast.
It is different in the algorithms for a mesh topology, where the execution times
obtained are upper-bounds. In these algorithms the rotations broadcast can be
overlapped with the updating of the matrices {as shown in {12] for systolic ar-
rays) and when the size of the matrices increases the total cost can be better
approximated by adding the costs of table 1 but without the cost of broadcast,
which is overlapped with the updating of the matrices. In this way. the isoef-
ficiency function of the algorithms for mesh topology is f(n) = /p. and these

147

FEUP - Faculdade de Engenharia da Universidade do Porto

methods are more scalable.

In addition. few processors can be utilized efficiently in the algorithm for a
ring, for example, with n = 1024, if p = 64 the block size must be lower or equal
to &. but when using 64 processors on the algorithm for a square mesh the block
size must be lower or equal to 64.

The overlapping of communication and computation in the algorithm for
triangular mesh is illustrated in figure 7. In this figure matrices 4 and 1" are
shown, and a triangular mesh with 21 processors is considered. The first steps of
the computation are represented writing into each block of the matrices which
part of the execution is carried out: R represents computation of rotations, B
broadcast of rotation matrices, U matrix updating, and D transference of data.
The numbers represent. which Jacobi set is involved, and an arrow indicates a
movement of data between blocks in the matrices and the corresponding commu-
nication of data between processors. We will briefly explain some of the aspects
in the figure:

~ Step 1: Rotation matrices are computed by the processors in the main diag-
onal of processors.

— Step 2: The broadcast of rotation matrices to the other processors in the
same row and column of processors begins.

— Step 3: Computation and communication are overlapped. All the steps in
the figure have not the same cost (the first step has a cost 24k, ns

)

and the

second 23 + 4227}, but if a large size of the matrices is assumed the cost
of the computational parts is much bigger than that of the communication
parts. therefore communication in this step finishes before computation.

— Step 4: More processors begin to compute and the work is more balanced.

— Step 5: Update of matrices has finished in processors in the main diagonal
and the subdiagonal of processors, and the movement of rows and colunms
of blocks begins in order to obtain the data distribution needed to perform
the work corresponding to the second Jacobi set.

— Step 6: The computation of the second set of rotation matrices begins in the
diagonal before the updating of the matrices have finished. All the processors
are involved in this step, and the work is more balanced than in the previous
steps. If the cost of computation is much bigger than the cost of commu-
nication, the broadcast could have finished and all the processors could be
computing. .

— Step 7: Only four diagonals of processors can be involved at the same time
in communications. Then. if the number of processors increases the cost of
comunication becomes less important.

— Step &: First and second updating are performed at the same time.

— Step 9: After this step all the data have been moved to the positions corres-
ponding to the second Jacobi set.

— Step 10: When the step finishes the third set of rotations can be computed.

As we can see, there is an inbalance at the beginning of the execution. but that
is compensated by the overlapping of communication and computation. which

148

VECPAR'98 - 3rd International Meeting on Vector and Parallel Processing

A \ A \
! i Ul Uy Uy
L.
BIi UL Ul Uy Ul vy vy vy
BTB1: UL Ul B1| vy U1 vy v vy
p——
{ B¥BLTU) uy BBl Ul Ul uy Uy uy
- — A{
' |BBI U Ul BBl ULl UL Uy ug U
H H T Y T
{1 iBmBivi uj 81 v Ul ug U
Step 5 Step 6
A V A \4
—
I D1 DEDY UY —l;zl DLDL UL
: + +
i DEDI DEDEDI U DI R Dy |DEDYUL
T 1 T Ll L
Ul DFDL Ul DEDTED] UL DfDLR DEDY | DEDY UL
Bl UL DEDL Ul DEDEDY U Y U1 DEDI R2 Ul DFD DEDI
Y T A i * i
{Brai UL DFDY Ul DFDED] Bl UL DEDY R2 U DFEDY [Dy
St A4 # #
| iBmB1 U DEDY U) DEDI BB U DEDIR) DD
Step 7 Step 8
vV A
DEDI UL U2 Lu DEDY U
L L
B DYDY UJ B2 U2 ug DEDI
T Y 1 " B il
DI B®B2 D DEDI BB2 U U DI
* Y= 1 Y
DFED1 BFR2 DED] D} D1 BB U2 D 5
ML) A m ™ A il
') DDl B2 Ul DED DD B2+B2 U2 DED 3
— TS Y A * ¥
iU} DTDI U DED] wy p#Dy BBz vd |ulD¥D] hE
Step 9. Step 10
V A \
1
r3 U2 DEDY D2 DFDIT
n . m T
ug Ug U2 D DZD2 DFD*DE U3
Ly L
‘| vz vg U3 U2 D¥D3 U4 DFDEDI U
kil k) il
| vd ud U2 B2 U3 D¥D3 U3 DEDFDI U2
I —— H Ly A
i D1 B2B2 U3 U2 Dy LERERE B2rB2 U2 D¥D U3 DEDFDI
H T g 1 A m A
ipeDi B#B2 UAUY | DYDY v v3 B2B2 U4 DFD] v D#D3

Fig. 7. Overlapping communication and computation on the algorithm for triangular
mesh.

Step 1 Step 2
A A '
R1 Bl
L iRi BBl
[] Al
i IR BIFBI
.b——f——j—f— Y
Lo R BB
1 A
P il BIFBI
T ¥
R TR BB
Step 3 Step 4

149

FEUP - Faculdade de Engenharia da Universidade do Porto

Table 2. Comparison of the algorithms for mesh topology. Execution time per sweep
(in seconds), on an Intel Paragon.

matrix size : 512 1024
processors ||triangular|square||triangular|square
3 10.92 77.61
4 7.40 47.96
10 3.67 22.71
16 2.76 15.02
36 1.39 7.27
64 1.21 5.53
136 0.66 2.74
256 0.96 2.50

makes it possible to overlook the cost of broadcast to analyze the scalability of
the algorithm. The same happens with the algorithm for square mesh.

The algorithm for a triangular mesh is in practice the most scalable due
to the overlapping of computation and communication and also to the regular
distribution of data, which produces a lower overhead than the algorithm for a
square mesh. In tables 2 and 3 the two algorithms for mesh are compared. The
results have been obtained on an Intel Paragon XP/S35 with 512 processors.
Because the number of processors possible to use is different in both algorithims.
the results have been obtained for different numbers of processors. The algorithm
for a square mesh has been executed on a physical square mesh. but the algorithm
for a triangular mesh has not been executed in a physical triangular mesh. but
in a square mesh. This could produce a reduction on the performance of the
algorithm for triangular mesh, but this reduction does not happen.

In table 2 the execution time per sweep when computing eigenvalues is shown
for matrix sizes 512 and 1024.

In table 3 the Mflops per node obtained with approximately the same number
of data per processor are shown. Due to the inbalance in the paralle] algorithms
the performance is low with a small number of processors. but when the number
of processors increases the inbalance is less important and the performance of
the parallel algorithms approaches that of the sequential method.

The performance of the algorithm for triangular mesh is much better when
the number of processors increases. For example, for a matrix size of 1408, in a
square mesh of 484 processors 2.99 Gflops were obtained, while in a triangular
mesh of 465 processors 4.23 Gflops were obtained.

6 Conclusions

We have shown how parallel block-Jacobi algorithms can be designed in two
steps: first associating one process to each block in the matrices. and then ob-

150

VECPAR'98 - 3rd International Meeting on Vector and Parallel Processing

Table 3. Comparison of the algorithms for mesh topologies. NMflops per node with
approximately the same number of data per processor. on an Intel Paragon XP/S35.

data/pro. : 4068 8192 18432 32768
S€q. : 13.10 14.71 18.63 18.39
proc. tr sq tr sq tr 8¢ tr sq
4 10.52 9.34 15.73 18.14
6 10.95 13.63 14.41 17.00

15 11.46 12.78 15.53 18.30

16 10.36 12,16 15.62 17.87
36 10.73]10.21}114.38[12.13][17.04]15.41]|1R.93

G4 10.15 12.14 15.46 17.65

taining algorithms for a topology by grouping processes and assigning them to
Processors.

Scalable algorithms have been obtained for mesh topologies and the more

scalable in practice is the algorithm for a triangular mesh.

References

1.

(8]

r

~1

s

J. Demmel and Ik. Stanley. The Performance of Finding Eigenvalues and Eigen-
vectors of Dense Symmetric Matrices on Distributed Memory Computers. In David
H. Bailey, Petter E. Bjorstad, John R. Gilbert. Michael \'. Mascagni. Robert 5.
Schreiber. Horst D. Simon. Virginia J. Torczon and Layne T. Watson. editor. Pro-
ceedings of the Seventh SIAM Conference on Parallel Processing for Scientific Com-
puting, pages 528-533. SIAM. 1995.

Robert Schreiber. Solving eigenvalue and singular value problems on an undersized
systolic array. SIAM J. Sci. Stat. Comput., 7(2):441-451, 1986.

Gautam Schroff and Robert Schreiber. On the convergence of the cyclic Jacobi
method for parallel block orderings. SIAM J. Matriz Anal. Appl., 10(3):326-346.
19K9.

Christian H. Bischof. Computing the singular value decomposition on a distributed
svstem of vector processors. Parallel Computing. 11:171-1R%6. 1989.

D. Giménez. \'. Hernandez. R. van de Geijn and A. M. Vidal. A block Jacobi method
on a mesh of processors. Concurrency: Practice and Experience, 9(5):391-411. May
1997.

L. Auslander and A. Tsao. On parallelizable eigensolvers. Ad. App. Math.. 13:253-
261, 1992,

S. Huss-Lederman, A. Tsao and G. Zhang. A parallel implementation of the invari-
ant subspace decomposition algorithm for dense symmetric matrices. In Proceedings
Sicth SIAM Conf. on Parallel Processing for Scientific Computing. SIAM. 1993.
Xiaobai Sun. Parallel Algorithms for Dense Eigenvalue Problems. In Whorkshop on
High Performance Computing and Gigabit Local Area Networks. Essen. Germany.
1996. pages 202-212. Springer-Verlag. 1997.

Stéphane Domas and Frangoise Tisseur. Parallel Implementation of a Symmet-
vic Eigensolver Based on the Yau and Lu Method. In José M. L. M. Palma

151

FEUP - Faculdade de Engenharia da Universidade do Porto

and Jack Dongarra. editor, Vector and Parallel Processing- VECPAR 96, pages 140-
153. Springer-Verlag, 1997.

10. Makan Pourzandi and Bernard Tourancheau. A Parallel Performance Study of
Jacobi-like Eigenvalue Solution. Technical report. 1994.

11. El Mostafa Daoudi and Abdelhak Lakhouaja. Exploiting the symmetry in the
parallelization of the Jacobi method. Parallel Computing, 23:137-151. 1997.

12. Richard P. Brent and Franklin T. Luk. The solution of singular-value and syvm-
metric eigenvalue problems on multiprocessor arrays. SIAM J. Sci. Stat. Comput..
6(1):69-84, 1985.

This article was processed using the IATEX macro package with LLNCS style

152

VECPAR'98 - 3rd International Meeting on Vector and Parallel Processing

Solving Large-Scale Eigenvalue Problems on
Vector Parallel Processors

David L. Harrar II and Michael R. Osborne

Centre for Mathematics and its Applications, School of Mathematical Sciences,
Australian National University, Canberra ACT 0200, Australia
David.HarrarQanu.edu.au,Michael.Osborne@anu. edu.au
WWW home page: http://wwwmaths.anu.edu.au/"dlh and “mike

Abstract. We consider the development and implementation of eigen-
solvers on distributed memory parallel arrays of vector processors and
show that the concomitant requirements for vectorization and paralleliza-
tion lead both to novel algorithms and novel implementation techniques.
Performance results are given for several large-scale applications and
some performance comparisons made with LAPACK and ScaLAPACK.

1 Introduction

Eigenvalue problems (EVPs) arise ubiquitously in the numerical simulations per-
formed on today’s high performance computers (HPCs), and often their solution
comprises the most computationally expensive algorithmic component. It is im-
perative that efficient solution techniques and high-quality software be developed
for the solution of EVPs on high performance computers.

Generally, specific attributes of an HPC architecture play a significant, if not
deterministic, role in terms of choosing/designing appropriate algorithms from
which to construct HPC software. There are many ways to differentiate today’s
HPC architectures, one of the coarsest being vector or parallel, and the respec-
tive algorithmic priorities can differ considerably. However, on some recent HPC
architectures — those comprising a (distributed-memory) parallel array of power-
ful vector processors, e.g., the Fujitsu VPP300 (see Section 3) - it is important,
not to focus exclusively upon one or the other, but to strive for high levels of
both vectorization and parallelization.

In this paper we consider the solution of large-scale eigenvalue problems,

Au = Mu, (1)

and discuss how the concomitant requirements for vectorization and paralleliza-
tion on vector parallel processors has lead both to novel implementations of
known methods and to the development of completely new algorithms. These
include techniques for both symmetric (or Hermitian) and nonsymmetric 4 and
for matrices with special structure, for example tridiagonal, narrow-banded, etc.
Performance results are presented for various large-scale problems solved on a
Fujitsu (Vector Parallel Processor) VPP300, and some comparisons are made
with analogous routines from the LAPACK [1] and ScaLAPACK [4] libraries.

153

FEUP - Faculdade de Engenharia da Universidade do Porto

2 Tridiagonal Eigenvalue Problems

Consider (1) with A replaced by a symmetric, irreducible, tridiagonal nllatrix T:
Tu = Au, where T = tridiag(8;, i, Bi+1), with 8; #0, i =2,---,n. (2)

One of the most popular methods for computing (selected) eigenvalues of T is
bisection based on the Sturm sign count. The widely used LAPACK /Scalapack
libraries, for example, each contain routines for (2) which use bisection. Since
the techniques are standard, they are not reviewed in detail here (see, e.g.,
[26]). Instead, we focus on the main computational component: Evaluation of
the Sturm sign count, defined by the recursion

B .
AN =a; - A AN =log——=—=])—-A i=12,---,n. 3
0'1() 231 3 U() (Ol Ui—l()\) t n ()
Zeros of o,()\) are eigenvalues of T, and the number of times 0;(}) < 0, ¢ =
1,---,n, is equal to the number of eigenvalues less than the approximation .

Vectorization via multisection: In terms of vectorization, the pertinent ob-
servation is that the recurrence (3) does not vectorize over the index i. However.
if it is evaluated over a sequence of m estimates, A;, it is trivial implementa-
tionally to interchange i- and j-loops and vectorize over j. This is the basic idea
behind multisection: An interval containing eigenvalues is split into more than
the two subintervals used with bisection. The hope is that the efficiency obtained
via vectorization offsets the spurious computation entailed in sign count evalu-
ation for subintervals containing no eigenvalues. For r > 1 eigenvalues, another
way to vectorize is to bisect r eigenvalue intervals at a time, i.e. multi-bisection.!

On scalar processors bisection is optimal.> On vector processors, however, this
is not the case, as shown in an aptly-titled paper [37]: “Bisection is not optimal
on vector processors”.® The non-optimality of bisection on a single VPP300
PE (“processing element”) is illustrated in Figure 1 (left), where we plot the
time required to compute one eigenvalue of a tridiagonal matrix (n = 1000)
as a function of m, the number of multisection points (i.e. vector length). The
tolerance is € = 3 x 10~!6. For all plots in this section, times are averages from
25 runs. .

Clearly, the assertion in [37] holds: Bisection is not optimal. In fact, multi-
section using up to 3400 points is superior. The minimum time, obtained using
70 points, is roughly 17% the bisection time, i.e. that obtained using LAPACK.

! Nomenclaturally, multisecting r intervals might consistently be termed “multi-
multisection”; we make no distinction and refer to this also as “multisection”.

2 This is probably not true for most superscalar processors: these should be able to
take advantage of the chaining/pipelining inherent in multisection.

3 This may not be true for vector processors of the near future, nor even perhaps
all of today’s, specifically those with large n;,;, compared with, e.g., those in [37].
Additionally, many of today’s vector PEs have a separate scalar unit so it is not
justifiable to model bisection performance by assuming vector processing with vector
length one - bisection is performed by the scalar unit. See the arguments in [10}.

154

VECPAR’98 - 3rd International Meeting on Vector and Parallel Processing

1 I l i T T
0.12 ¢ 256
0.08 - 192
128
0.04 -
64
0 | I ! 0 pipaiiiiptit
0 64 128 192 256 10-% 10°1° 10-!2 107'¢ 1076

Fig. 1. (Left) Time vs. number of multisection points m = 1, 256. (Right) Opti-
mal (i.e., time-minimizing) m vs. accuracy ¢; dotted lines show mmin(€) for fixed
numbers of multisection steps v = 2,...,7 (from left to right).

Once it is decided to use multisection, there still remains a critical question:
What is the optimal number of multisection points (equivalently, vector length)?
The answer, which depends on r, is discussed in detail in {9]; here we highlight
only a few key observations and limit discussion to the case r = 1.

Although not noted in [37], the optimal number of points, mopt, depends on
the desired accuracy ¢, as illustrated in Figure 1 (right), where we plot mgpt vs.
¢ € [10~7,3 x 10716]. Note that mop; varies between about 50 and 250.4 Two
effects explain this apparently erratic behavior — one obvious, one not so.

To reach a desired accuracy of € using m multisection points requires

v = —[loge/ log(m + 1)] (4)

multisection steps. Generally, mopt(€) corresponds to some Mmin (v, €) at which
the ceiling function in (4) causes a change in v; that is, a minimal number of
points effecting convergence to an accuracy of € in v steps. The dotted lines in
Figure 1 (right) indicate mopt (v, €) for fixed v. As € is decreased (i.e., moving to
the right) mmin (v, €) increases until for some e (1) it entails too much spurious
computation in comparison with the (smaller) vector length, Mmin(v+1, €}, which
is now large “enough” to enable adequate vectorization. The optimal now follows
along the curve mmin(v + 1,€) until reaching €crit(v + 1), etc. This explains the
occasional transitions from one v-curve to a v + l-curve, but not the oscillatory
switching. This is an artifact of a specific performance anomaly associated with
the VPP300 processor, as we now elucidate.

In Figure 2 we extend the range of the plot on the left in Figure 1 to include
vector lengths up to 2048. The plot “wraps around” in that the bottom line
(¢ = 0) is for m = 1,...,256, the second (i = 1) for m = 257,...,512, etc.
Accuracy is now € = 3 X 10710, Note that there is a 10-20% increase in time
when the vector length increases from 64i + 8 to 64i + 9 (dotted vertical lines)
throughout the entire range of vector lengths (i = 0,---, 31), though the effect
lessens as i increases. This anomalous behavior fosters the erraticity in Figure 1
(right). Whenever mumin(v,€) = 73,137,201,... (or one or two more), the time
is decreased using Mmin = Mmin (P, €) points, where ¥ # v is such that 1i,ip is
not an anomalous vector length.

4 These values of mope are roughly five to twenty times those determined in [37].
manifesting the effect of the significantly larger n,,; of the VPP300.

155

FEUP - Faculdade de Engenharia da Universidade do Porto

01 = T L T

0.08 pr——————

0.06 W

0.02 — d . -
nE L . B

256i+1 256i+64 25614128 2561+192 256(i+1)

Fig. 2. Time vs. vector length m = 1,...,2048. Dotted lines at m = 64i + 9.

This performance anomaly is apparent also for standard vector operations
(addition, multiplication, etc.) on the VPP300 [9]; we do not believe it has been
noted before, and we are also currently unable to explain the phenomenon. The
savings is of course only 10-20% but it is still probably worthwhile to avoid these
anomalous vector lengths, in general.

When computing 7 > 1 eigenvalues, the optimal number of points per eigen-
value interval, mopt, tends to decrease as r increases, until for some r = 7,
multi-bisection is preferable to multisection; this occurs when r is large enough
that multi-bisection entails a satisfactory vector length (in relation to n;;;).
The value of 7, at which this occurs depends on the desired accuracy e. For
more details see [9].

Parallelization — Invariant Subspaces for Clustered Eigenvalues: Eigen-
vectors are calculated using the standard technique of inverse iteration (see, e.g.,
[14,40]). Letting A; denote a converged eigenvalue, choose u® and iterate

(T - Dk =ub=t) k=1,2,---.

Generally, one step suffices. Solution of these tridiagonal linear systems is effi-
ciently vectorized via “wrap-around partitioning”, discussed in Section 4.

The computation of distinct eigenpairs is communication free. However, com-
puted invariant subspaces corresponding to multiple or tightly clustered eigen-
values are likely to require reorthogonalization. If these eigenvalues reside on
different PEs, orthogonalization entails significant communication. Hence, clus-
tered eigenvalues should reside on individual PEs. This can be accomplished in
a straightforward manner if complete spectral data is available to all PEs - for
example, if the eigenvalue computation is performed redundantly on each PE,
or if all-to-all communication is initiated after a distributed computation - in
which case redistribution decisions can be made concurrently. However, we insist
on a distributed eigenvalue calculation and opine that all-to-all communication
is too expensive.

We detect clustering during the refinement process and effect the redistribu-
tion in an implicit manner. Once subinterval widths reach a user-defined “cluster
tolerance”, the smallest and largest sign counts on each PE are communicated
to the PE which was initially allocated eigenvalues with those indices, and it is
decided which PE keeps the cluster. This PE continues refinement of the clus-
tered eigenvalues to the desired accuracy and computes a corresponding invariant

156

VECPAR'98 - 3rd International Meeting on Vector and Parallel Processing

subspace; the other ignores the clustered eigenvalues and continues refinement
of any remaining eigenvalues. If a cluster extends across more than two PEs
intermediate PEs are dropped from the computation. Load-imbalance is likely
(and generally unavoidable) with the effect worsening as cluster sizes increase.
This approach differs from that used in the equivalent ScaLAPACK routines [5].

We note that significant progress has recently been made in the computation
of orthogonal eigenvectors for tightly clustered eigenvalues [7,27], the goal being
to obtain these vectors without the need for reorthogonalization. These ideas
have not yet been used here, though they may be incorporated into later versions
of our routines; it is expected they will be incorporated into future releases of
LAPACK and ScaLAPACK [6)].

3 Symmetric Eigenvalue Problems

The methods we use for symmetric EVPs entail the solution of tridiagonal EVPs,
and this is accomplished using the procedures just described; overall, the tech-
niques are relatively standard and are not discussed in detail.

The first is based on the usual Householder reduction to tridiagonal form,
parallelized using a panel-wrapped storage scheme [8]; there is also a version for
Hermitian matrices. For sparse matrices we use a Lanczos method [16]. Perfor-
mance depends primarily on efficient matrix-vector multiplication; the routine
uses a diagonal storage format, loop unrolling, and column-block matrix distribu-
tion for parallelization. The tridiagonal EVPs that arise are solved redundantly
using a single-PE version of the tridiagonal eigensolver. No performance data
are presented for the Lanczos solver, but comparisons of the Householder-based
routine with those in LAPACK/ScaLAPACK are included in Section 5.

4 Nonsymmetric Eigenvalue Problems

Arnoldi Methods: Arnoldi’s method [2] was originally developed to reduce a
matrix to upper Hessenberg form; its practicability as a Krylov subspace pro-
jection method for EVPs was established in [31]. Letting Vi = [v1] -~ |um] de-
note the matrix whose columns are the basis vectors (orthonormalized via, e.g.,
modified Gram-Schmidt) for the m-dimensional Krylov subspace, we obtain the
projected EVP

Hy =V, AV, y = Ay, (5)

where H is upper Hessenberg and of size m < n. This much smaller eigenproblem
is solved using, e.g., a QR method. Dominant eigenvalues of H approximate those
of A with the accuracy increasing with m.

A plethora of modifications can be made to the basic Arnoldi method to
increase efficiency, robustness, etc. These include: restarting [31], including the
relatively recent implicit techniques [18, 38}; deflation, implicit or explicit, when
computing 7 > 1 eigenvalues; preconditioning/acceleration techniques based on.

157

FEUP - Faculdade de Engenharia da Universidade do Porto

e.g., Chebyshev polynomials [32], least-squares [33,34], etc.; spectral transfor-
mations for computing non-extremal eigenvalues, e.g., shift-invert [28], Cayley
[17,22], etc.; and of course block versions (35, 36). For a broad overview see [34].

Our current code is still at a rudimentary stage of development, but we have
incorporated a basic restart procedure, shift-invert, and an implicit deflation
scheme similar to that outlined in [34] and closely related to that used in [30].
Although it is possible to avoid most complex arithmetic even in the case of a
complex shift [28), our routine is currently restricted to real shifts.

In order to be better able to compute multiple or clustered eigenvalues we
are also developing a block version. Here matrix-vector multiplication is replaced
by matrix-matrix multiplication, leading to another potential advantage, partic-
ularly in the context of high performance computing: They enable the use of
level-3 BLAS. On some machines this can result in block methods being prefer-
able even in the case of computing only a single eigenvalue [36)].

Parallelization opportunities seem to be limited to the reduction phase of
the algorithm. Parallelizing, e.g., QR is possible and has been considered by
various authors (see, e.g., [3,13] and the references therein); however, since the
projected systems are generally small, it is probably not worthwhile paralleliz-
ing their eigensolution. This is the approach taken with P.ARPACK [21], an
implementation of ARPACK [19] for distributed memory parallel architectures;
although these packages are based on the implicitly restarted Arnoldi method
(18, 38], parallelization issues are, for the most part, identical to those for the
standard methods. It is probably more worthwhile to limit the maximum Hes-
senberg dimension to one that is viably solved redundantly on each processor
and focus instead on increasing the efficiency of the restarting and deflation
procedures and to add some form of preconditioning/acceleration; however, the
choices for these strategies should, on vector parallel processors, be predicated on
their amenability to vectorization. As mentioned, our code is relatively nascent,
and it has not vet been parallelized, nor efficiently vectorized.

Newton-Based Methods: Let K : C® — C™ and consider the eigenvalue
problem
KMNu=0, KO\ =(A4-2X). (6)

(For generalized EVPs, Au = ABu, define K(\) = (A — AB).) Reasonable
smoothness of K()) is assumed but it need not be linear in A. The basic idea
behind using Newton’s method to solve EVPs is to replace (6) by the problem
of finding zeros.of a nonlinear function. Embed (6) in the more general family

KMNu=p8MNz, su=«k. (7

As X approaches an eigenvalue K (\) becomes singular so the solution u of the
first equation in (7) becomes unbounded for almost all 3(A)z. Hence, the second
equation — a scaling condition - can only be satisfied if 8(A) — 0 as A approaches
an eigenvalue. The vectors s and z can be chosen dynamically as the iteration
proceeds; this freedom results in the possibility of exceeding the second-order
convergence rate characteristic of Newton-based procedures [25}.

158

VECPAR'98 - 3rd International Meeting on Vector and Parallel Processing

Differentiating equations (7) with respect to A gives

Jdu dK dg Ldu

K EX + Ku = a—x.’l), S EX

Solving for the Newton correction, the Newton iteration takes the form
’ B _ s*u

& - o ik
x s*K d)‘u

=0.

Ae—A=-A4), A=

Note that for the non-generalized problem (1), dK/d\ = —I. The main com-
putational component is essentially inverse iteration with the matrix K; this is
effected using a linear solver highly tuned for the VPP300 [23].

Convergence rates, including conditions under which third-order convergence
is possible, are discussed in [24]. A much more recent reference is [25]) in which
the development is completely in terms of generalized EVPs.

Deflation for k converged eigenvalues can be effected by replacing B(X) with

B(X) '
M (- X)

However, it is likely to be more beneficial to use as much of the existing spectral
information as possible (i.e., not only the eigenvalues). Weilandt deflation (see,
e.g., [34]) requires knowledge of left and right eigenvectors, hence involves matrix
transposition which is highly inefficient on distributed memory architectures.
Hence, we opt for a form of Schur-Weilandt deflation; see [25] for details.

A separate version of the routines for the Newton-based procedures has been
developed specifically for block bidiagonal matrices. This algorithm exhibits an
impressive convergence rate of 3.56, and uses a multiplicative form of Wielandt
deflation so as to preserve matrix structure. Implementationally, inversion of
block bidiagonal matrices is required, and this is efficiently vectorized by the
technique of wrap-around partitioning, which we now describe.

oe(N) =

Vectorization — Wrap-Around Partitioning for Banded Systems: Wrap-
around partitioning [12] is a technique enabling vectorization of the elimination
process in the solution of systems of linear equations. Unknowns are reordered
into ¢ blocks of p unknowns each, thereby highlighting groups of unknowns which
can be eliminated independently of one another. The natural formulation is for
matrices with block bidiagonal (BBD) structure, shown below on the left, but
the technique is also applicable to narrow-banded matrices of sufficiently regular
structure, as illustrated by reordering a tridiagonal matrix to have BBD form,

o ol0 O --- Bn an
A4, 0 0 B] ay B210 O - .- o 0
B, A, 0 --- 0 Bz az|Ba 0] -~ -] 0 0O
0 Bajas PBg] -~ - 0 0
0 Bz As -+ 0 1. tridiag(8;, o, Big1) —
0 0 --B, A, o 0f - - Bn-2 an-2[Fn-1 0
0 O - 0 Bn-1{an-1 8n

Significant speed-ups — of roughly a factor of 20 over scalar speed - are easily
attainable for matrices of size n > 1000 in the case that the subblock dimension,

159

FEUP - Faculdade de Engenharia da Universidade do Porto

m, is small (m = 2 for tridiagonal matrices). The case ¢ = 2 corresponds to cyclic
reduction, but with wrap-around partitioning p and ¢ need not be exact factors of
n: this means that stride-two memory access, which may result in bank conflicts
on some computers (e.g., the VPP300), can be avoided. However, g should be
relatively small; stride-3 has proven effective on the VPP300. Orthogonal factor-
ization is used rather than Gaussian elimination with partial pivoting since the
Jatter is known to have less favorable stability properties for BBD matrices [41].
Stable factorization preserves BBD structure so that wrap-around partitioning
can be applied recursively.

An example is illustrative. Consider a BBD matrix of size n = 11. With
inexact factors p = 4 and ¢ = 2 the reordered matrix has the form shown
below on the left. In the first stage the blocks B;. 1 = 2,4,6,8 are eliminated;
since each is independent of the others this elimination can be vectorized. Fill-in
occurs whether orthogonal factorization or Gaussian elimination with pivoting
is used; this is shown at the right, where blocks remaining nonzero are indicated
by *, deleted blocks by 0, and blocks becoming nonzero by a 1 indicating fill-in
occurred in that position during the first stage.

Ay By . 1

Aj B3 « 1
Ag Bsg . .1
Ar B . .1
By A (] - T
By Agq 0 1 -
Bs Ag 0 1«
Bg AR 0 1
BQ AQ w e
Bio A10 -
B11 An .-

The potential for recursive application of the reordering is evinced by noting
that the trailing block 2 x 2 submatrix - the one now requiring elimination - is
again block bidiagonal. Recursion terminates when the final submatrix is small
enough to e solved sequentially.

Arnoldi-Newton Methods: Although the Newton-based procedures ultimately
result in convergence rates of up to 3.56, they suffer when good initial data are
unavailable; unfortunately this is often the case when dealing with large-scale
EVPs. Conversely, Arnoldi methods seem nearly always to move in the right
direction at the outset, but may stall or breakdown as the iteration continues,
for instance if the maximal Krylov dimension is chosen too small. Heuristics are
required to develop efficient, robust Arnoidi eigensolvers. In a sense then, these
methods may be viewed as having orthogonal difficulties: Newton methods suffer
at the outset, but ultimately perform very well, and Arnoldi methods start off
well but perhaps run into difficulties as the iteration proceeds. For this reason we
have considered a composition of the two methods: The Arnoldi method is used
to get good initial estimates to the eigenvalues of interest and their correspond-
ing Schur vectors for use with the Newton-based procedures. These methods are
in the early stages of development.

160

VECPAR’98 - 3rd International Meeting on Vector and Parallel Processing

5 Performance Results on Applications

We now investigate the performance of some of our routines on eigenvalue prob-
lems arising in a variety of applications and make some comparisons with corre-
sponding routines from LAPACK and ScaLAPACK. More details and extended
performance results on these applications can be found in [11].

Fujitsu VPP300: All performance experiments were performed on the thirteen
processor Fujitsu VPP300 located at the Australian National University. The
Fujitsu VPP300 is a distributed-memory parallel array of powerful vector PEs,
each with a peak rate of 2.2 Gflops and 512 MB or 1.92 GB of memory - the
ANU configuration has a peak rate of about 29 Gflops and roughly 14 GB of
memory. The PEs consist of a scalar unit and a vector unit with one each of -
load, store, add, multiply and divide pipes. The network is connected via a full
crossbar switch so all processors are equidistant; peak bandwidth is 570MB /s
bi-directional. Single-processor routines are written in Fortran 90 and parallel
routines in VPP Fortran, a Fortran 90-based language with compiler directives
for data layout specification, communication, etc.

Tridiagonal EVP — Molecular Dynamics: First we consider an application
arising in molecular dynamics. The multidimensional Schrédinger equation de-
scribing the motion of polyatomic fragments cannot be solved analytically. In nu-
nerical simulations it is typically necessary to use many hundreds of thousands
of basis functions to obtain accurate models of interesting reaction processes;
hence, the construction and subsequent diagonalization of a full Hamiltonian
matrix, H, is not viable. One frequently adopted approach is to use a Lanczos
method, but the Krylov dimension - the size of the resulting tridiagonal ma-
trix, T — often exceeds the size of H. Thus, computation of the eigenvalues of T
becomes the dominant computational component.

To test the performance of the tridiagonal eigensolver described in Section 2
we compute some eigenvalues and eigenvectors for a tridiagonal matrix of order
n = 620,000 arising in a molecular dynamics calculation (29]. In Table 1 we
present results obtained using our routines and the corresponding ones from
LAPACK on a single VPP300 processor for the computation of one eigenpair and
100 eigenpairs of the 11411 which are of interest for this particular matrix. For
further comparison we also include times for the complete eigendecomposition
of matrices of size 1000, 3000, and 5000. Values are computed to full machine
precision.

T #»>] L [100] 1000 3000 5000 |

SSL2VP [[23.06]162.7] 3.208 23.90 63.43
LAPACK|25 11]768.1|7.783 (25.46)|132.4 (395.5)|581.1 (1717.)

Table 1. Tridiagonal eigensolver: Molecular dynamics application.

161

FEUP - Faculdade de Engenharia da Universidade do Porto.

<

For large numbers of eigenvalues the optimal form of multisection is multi-
bisection so that there are no significant performance differences between the
two eigenvalue routines. However, the eigenvector routine using wrap-around
partitioning is significantly faster than the LAPACK implementation, resulting
in considerably reduced times when large numbers of eigenvectors are required.
We note that the LAPACK routine uses a tridiagonal QR method when all
eigenvalues are requested. If r < n — 1 are requested, bisection with inverse
iteration is used; the parenthetical times — a factor of three larger — are those
obtained computing n — 1 eigenpairs and serve further to illustrate the efficiency
of our implementation. Effective parallelization is evident from the performance
results of the symmetric eigensolver, which we next address.

Symmetric EVP — Quantum Chemistry: An application arising in compu-
tational quantum chemistry is that of modelling electron interaction in protein
molecules. The eigenvalue problem again arises from Schrédinger’s equation,
‘H¥ = E¥, where H is the Hamiltonian operator, E is the total energy of the
system, and ¥ is the wavefunction. Using a semi-empirical, as opposed to ab
initio, formulation we arrive at an eigenvalue problem,

1 = ey,

where € is the energy of an electron orbital and ¢ the corresponding wave-
function. The software package MNDO94 [39] is used to generate matrices for
three protein structures: (1) single helix of pheromone protein from Euplotes
Raikovi (573 atoms, n = 1482), (2) third domain of turkey ovomucoid inhibitor
(814 atoms, n = 2068), and (3) bovine pancreatic ribonuclease A (1856 atoms,
n = 4709). In Table 2 we give the times required to compute all eigenpairs of the
resulting symmetric EVPs using our routines based on Householder reduction
and the tridiagonal eigensolver. Also given are times obtained using LAPACK
and ScaLAPACK. As noted above, when all eigenvalues are requested these rou-
tines use QR on the resulting tridiagonal system and this is faster than their
routines based on bisection and inverse iteration. Thus, if fewer than n eigenval-
ues are requested the performance differences between those routines and ours
are amplified considerably.

(n I 802 2068 | 4709]
[#PBs [1 [2]4]1[2]4]1]2]4]
SSL2VP(P) [[4.130]3.157[1.783[[35.55]24.76[12.69][373.1[217.5[113.1
(Sca)LAPACK||5.884[7.362]6.437]|68.22[59.62[46.03]|694.2[467 .8|314.6

Table 2. Symmetric eigensolver: Quantum chemistry application.

The reduction and eigenvector recovery algorithmic components are appar-
ently more efficiently implemented in ScaLAPACK, but the efficiency of our

162

VECPAR'98 - 3rd International Meeting on Vector and Parallel Processing

tridiagonal eigensolvers results in superior performance for the SSL2VP(P) rou-
tines. Good scalability of our parallel implementation is also evident.

Nonsymmetric EVP — Optical Physics: Now we consider an application
from optical physics, namely the design of dielectric waveguides, e.g., optical
fibers. We solve the vector wave equation for general dielectric waveguides which,
for the magnetic field components, takes the form of two coupled PDEs

9'H, 9*H. _,0ln(n) <9§_y _ 0H,

) + (n*k* = BHH,. =0

Ox? * By? Oy Oz Ay
9*H, O°H, . 0ln(n) (0H, OH. R
522 + 55 -2 iz <—6Z-L'— - Ta—y—) + (nk 8)Hy =0.

Following {20], a Galerkin procedure is applied to this system, resulting in a
coupled system of algebraic equations. Given an optical fiber with indices of
refraction n, and n; for the cladding and core regions, respectively, eigenvalues
of interest correspond to “guided modes” and are given by X = (B/k)?, where
B/k € [no,n;). The matrix is full, real, and nonsymmetric; despite the lack of
symmetry all eigenvalues are real.

Since the Arnoldi-based procedures have not yet been efficiently vector-
ized/parallelized we do not compare performance against, e.g., ARPACK or
P_ARPACK. Instead we illustrate the considerable reduction in time obtained
using the Arnoldi method to acquire good initial data for the Newton-based
procedures — that is, the Arnoldi-Newton method. This comparison is somewhat
contrived since the Newton codes use full complex arithmetic and the matrix for
this problem is real. However, it serves to elucidate the effectiveness of combin-
ing the two procedures. Considering a fiber with indices of refraction n, = 1.265
and n; = 1.415, we use shift-invert Arnoldi (in real arithmetic) with a shift of
o = 1.79 € [1.265%,1.415%). Once Ritz estimates are O(1 x 1079), eigenvalues
and Schur vectors are passed to the Newton-based routine. Generally, only one
Newton step is then necessary to reach machine precision. Times for complex
LU factorization are shown, and the number of factorizations required with the
Newton and Arnoldi-Newton methods appears in parentheses.

[n [lemplx LU] Newton Arnoldi-Newton||

1250]] 4.105 |1414. (108)] 328.4 (26)
3200]| 62.02 |20904 (103)| 3597. (31)

Table 3. Nonsymmetric eigensolver: Optical physics application.

Matrices are built using the (C++) software library NPL [15] which also
includes an eigensolver; our routine consistently finds eigenvalues which NPL’s
fails to locate — in this example, NPL located ten eigenvalues of interest while our
routines find fourteen. The techniques used here are robust and effective. Clearly
the use of Arnoldi’s method to obtain initial eigendata results in a significant
reduction in time. More development work is needed for these methods and for

163

FEUP - Faculdade de Engenharia da Universidade do Porto

their implementations, in particular the (block) Arnoldi routine which is not
nearly fully optimized.

Complex Nonsymmetric Block Bidiagonal EVP — CFD: Our final appli-
cation is from hydrodynamic stability; we consider flow between infinite parallel
plates. The initial behavior of a small disturbance to the flow is modelled by the
Orr-Sommerfeld equation

i (2 L) 2o, RU(z)
E(E_Q) ¢+(U(Z)‘/\)<E_a)¢— o ¢=0

where a is the wave number, R is the Reynolds’ number, and U(z2) is the velocity
profile of the basic flow; we assume plane Poiseuille flow for which U(z) = 1— 22
Boundary conditions are ¢ = d¢/dz = 0 at solid boundaries and, for boundary
layer flows, ¢ ~ 1 as z — oco. The differential equation is written as a system
of four first-order equations which, when integrated using the trapezoidal rule,
yields a generalized EVP

K(a,R)u=sTK(o,R), K(a,R)= A(a,R) - AB,

where A(a, R) is complex and block bidiagonal with 4 x 4 blocks: Further de-
scription of the problem formulation can be found in [11].

We compute the neutral curve, i.e. the locus of points in the (a, R)-plane for
which Im{c(a, R)} = 0, using the Newton-based procedures of the last section.
The resulting algorithm has convergence rate 3.56 [25]. We use a grid with 5000
points for which A is of order n = 20000. A portion of the neutral curve is
plotted in Figure 3.

12 + ' -
1.02 e » 0 80 8 n -
« : :
08 F : -
[1 1
5772 9000 12000
Re

Fig. 3. Complex banded nonsymmetric eigensolver: Neutral stability diagram
for Poiseuille flow.

The significant degree of vectorization obtained using wrap-around parti-
tioning enables us to consider highly refined discretizations. Additional results,
including consideration of a Blasius velocity profile, can be found in [11].

Acknowledgements

The authors thank the following for assistance with the section on applications:
Anthony Rasmussen, Sean Smith, Andrey Bliznyuk, Margaret Kahn, Francois
Ladouceur, and David Singleton. This work was supported as part of the Fujitsu-
ANTU Parallel Mathematical Subroutine Library Project.

164

VECPAR'98 - 3rd International Meeting on Vector and Parallel Processing

References

1.

10.
11.

12.

13.

18.

E. ANDERSON, Z. Bal, C. BiscHoF, J. DEMMEL, J. DoNGARRA, J. DU
CROZ, A. GREENBAUM, S. HAMMARLING, A. MCKENNY, S. OSTROUCHOV. AND
D. SORENSEN, LAPACK: Linear Algebra PACKage. software available from
http://www.netlib.org under directory “lapack”.

. W. ArnoLDI, The principle of minimized iterations in the solution of the matrz

eigenvalue problem, Quarterly of Appl. Math., 9 (1951), pp. 17-29.

7. Bal AND J. DEMMEL, Design of a parallel nonsymmetric eigenroutine toolboz,

Part I, Tech. Rep. Computer Science Division Report UCB/CSD-92-718, Univer-
sity of California at Berkeley, 1992.

. L. BLACKFORD, J. Cnol, A. CLEARY, E. D’AZEVEDO, J. DEMMEL, 1. DHILLON,

J. DONGARRA, S. HAMMARLING, G. HENRY, A. PeETITET, K. STANLEY,
D. WALKER, AND R. WHALEY, ScaLAPACK: Scalable Linear Algebra PACKage.
software available from http://www.netlib.org under directory “scalapack”.

. J. DEMMEL, 1. DHILLON, AND H. REN, On the correctness of some bisection-like

parallel eigenvalue algorithms in floating point arithmetic, Electronic Trans. Num.
Anal. (ETNA), 3 (1996), pp. 116-149.

. 1. DHILLON, 1997. Private communication. ' .
L. DHILLON, G. FANN, AND B. PARLETT, Application of a new algorithm for the

symmetric eigenproblem to computational quantum chemisty, in Proc. of the Eight
SIAM Conf.on Par. Proc. for Sci. Comput., SIAM, 1997.

 J. DONGARRA AND R. VAN DE GEUN, Reduction to condensed form for the eigen-

value problem on distributed memory architectures, Parallel Computing, 18 (1992).
pp. 973-982.

. D. HaRRAR 11, Determining optimal vector lengths for multisection on vector pro-

cessors. In preparation.

. Multisection vs. bisection on vector processors. In preparation.

D. HARRAR II, M. KAHN, AND M. OSBORNE, Parallel solution of some large-
scale eigenvalue problems arising in chemistry and physics, in Proc. of Fourth Int.
Workshop on Applied Parallel Computing: PARA98, Berlin, Springer-Verlag. To
appear.

M. HEGLAND AND M. OSBORNE, Wrap-around partitioning for block bidiagonal
systems, IMA J. Num. Anal. to appear.

(. Henry, D. WATKINS, AND J. DONGARRA, A parallel implemenations of
the nonsymmetric QR algorithm for distributed memory architectures, Tech.
Rep. Computer Science Technical Report CS-97-355, University of Tennessee at
Knoxville, 1997.

. 1. IPSEN, Computing an eigenvector with inverse iteration, SIAM Review. 39

(1997), pp. 254-291.

5. F. LADOUCEUR, 1997. Numerical Photonics Library, version 1.0.
. C. LaNczos, An iteration method for the solution of the eigenvalue problem of

linear differential and integral operators, J. Res. Nat. Bur. Standards, 45 (1950).
pPp- 255-282.

. R. LEHOUCQ AND K. MEERBERGEN, Using generalized Cayley transformations

within an ineract rational Krylov sequence method, SIAM J. Mat. Anal. and Appl.
To appear.

R. LEHOUCQ AND D. SORENSEN, Deflation techniques for an implicitly restarted
Arnoldi iteration. SIAM J. Mat. Anal. and Appl., 8 (1996), pp. 789-821.

165

19

20.

21.

22.

23.

24.

26.

27.

28.

29.
30.

31.

32.

33.

34.

FEUP - Faculdade de Engenharia da Universidade do Porto

. R. LEHoucqQ, D. SORENSEN, AND P. Vu, ARPACK: An implementation of the
Implicitly Restarted Arnoldi Iteration that computes some of the eigenvalues and
eigenvectors of a large sparse matriz, 1995.

D. MARCUSE, Solution of the vector wave equation for general dielectric waveguides
by the Galerkin method, IEEE J. Quantum Elec., 28(2) (1992), pp. 459-465.

K. MASCHOFF AND D. SORENSEN, P.ARPACK: An efficient portable large scale
eigenvalue package for distributed memory parallel architectures parallel supercom-
puter, in Proc. of the Third Int. Workshop on Appl. Parallel Comp. (PARA96),
Denmark, 1996.

K. MEERBERGEN, A. SPENCE, AND D. ROOSE, Shift-invert and Cayley transforms
for detection of rightmost eigenvalues of nonsymmetric matrices, BIT, 34 (1995),
pp. 409-423.

M. NakaNisHI, H. INa, aAND K. MIURA, A high performance linear equation solver
on the VPP500 parallel supercomputer, in Proc. Supercomput. '94, 1994,

M. OSBORNE, Inverse iteration, Newton’s method, and nonlinear eigenvalue prob-
lerns, in The Contributions of J.H. Wilkinson to Numerical Analysis, Symposium
Proc. Series No. 19, The Inst. for Math. and its Appl., 1979.

. M. OsBORNE AND D. HARRAR I, Inverse iteration and deflation in general eigen-
value problems, Tech. Rep. Mathematics Research Report No. MRR 012-97, Aus-
tralian National University. submitted.

B. PARLETT, The Symmetric Eigenvalue Problem, Prentice Hall, Englewood Cliffs,
1980.

B. PARLETT AND 1. DHILLON, Fernando’s solution to Wilkinson’s problem: en
application of double factorization, Lin. Alg. Appl., 267 (1997), pp. 247-279.

B. PARLETT AND Y. SAAD, Complez shift and invert stategies for real matrices,
Lin. Alg. Appl., 88/89 (1987), pp. 575-595.

A. RASMUSSEN AND S. SMITH, 1998. Private communication.

A. RUHE, The rational Krylov algorithm for nonsymmetric eigenvalue problems,
III: Complez shifts for real matrices, BIT, 34 (1994), pp. 165-176.

Y. SaAD, Variations on Arnoldi’s method for computing eigenelements of large
unsymmetric matrices, Lin. Alg. Appl., 34 (1980), pp. 269-295.

, Chebyshev acceleration techniques for solving nonsymmetric eigenvalue
problems, Math. Comp., 42(166) (1984), pp. 567-588.

, Least squares polynomials in the complezr plane and their use for solving
parse nonsymmetric linear systems, SIAM J. Numer. Anal., 24 (1987), pp. 155-
169.)

, Numerical Methods for Large Eigenvalue Problems, Manchester University
Press (Series in Algorithms and Architectures for Advanced Scientific Computing),

" Manchester, 1992.

. M. SADKANE, A block Arnoldi-Chebyshev method for computing the leading eigen-
pairs of large sparse unsymmetric matrices, Numer. Math., 64 (1993), pp. 181-193.

. J. ScoTT, An Arnoldi code for computing selected eigenvalues of sparse real un-
symmetric matrices, ACM Trans. on Math. Soft., 21 (1995), pp. 432-475.

. H. SIMON, Bisection is not optimal on vector processors, SIAM J. Sci. Stat. Com-

put., 10 (1989), pp. 205-209.

D. SORENSEN, Implicit application of polynomial filters in a k-step Arnoldi method,

SIAM J. Mat. Anal. and Appl,, 13 (1992), pp. 357-385.

. W. THIEL, 1994. Program MNDQ%4, version 4.1.

. J. WILKINSON, The Algebraic Eigenvalue Problem, Clarendon Press. Oxford, 1965.

. S. WRIGHT, A collection of problems for which Gaussian elimination with partial
pivoting is unstable, SIAM J. Sci. Stat. Comput., 14 (1993), pp. 231-238.

166

VECPAR'98 - 3rd International Meeting on Vector and Parallel Processing

Solving Eigenvalue Problems on Networks of
Processors *

D. Giménez, C. Jiménez, M. J. Majado, N. Marin and A. Martin

Departamento de Informatica. Lenguajes y Sistemas Informaticos.
Univ de Murcia. Aptdo 4021. 30001 Murcia, Spain.
{domingo,mmajado,nmarin }@dif.um.es

Abstract. In recent times the work on networks of processors has be-
come very important, due to the low cost and the availabilitv of these
svstems. This is why it is interesting to study algorithms on networks
of processors. In this paper we study on networks of processors different
Eigenvalue Solvers. In particular, the Power method, deflation, Givens al-
gorithm, Davidson methods and Jacobi methods are analized using PVM
and MPI. The conclusion is that the solution of Eigenvalue Problems can
be accelerated by using networks of processors and typical parallel al-
gorithms, but the high cost of communications in these systems gives rise
to small modifications in the algorithms to achieve good performance.

1 Introduction

Within the different platforms that can be used to develop parallel algorithms.
in recent years special attention is being paid to networks of processors. The
main reasons for their use are the lesser cost of the connected equipment. the
greater availability and the additional utility as a usual means of work. On the
other hand, communications, the heterogeneity of the equipment, their shared
use and. generally, the small number of processors used are the negative factors.

The biggest difference between multicomputers and networks of processors
is the high cost of communications in the networks. due to the small bandwidth
and the shared bus which allows us to send only one message at a time. This
characteristic of networks makes it a difficult task to obtain acceptable efficien-
cies. and also lets one think of the design of algorithms with good performances
on a small number of processors, more than of the design of scalable algorithms.

So, despite not being as efficient as supercomputers, networks of processors
come up as a new environment to the development of parallel algorithms with
a good ratio cost/efficiency. Some of the problems that the networks have can
be overlooked using faster networks, better algorithms and new environments
appropiate to the network features.

* Partially supported by Comisién Interministerial de Ciencia v Tecnologfa. project

TIC96-1062-C03-02. and Consejeria de Cultura y Educacién de Murcia. Direccién
General de Universidades. project COM-18/96 MAT.

167

FEUP - Faculdade de Engenharia da Universidade do Porto

The most used matricial libraries (BLAS. LAPACK [1]. ScaLAPACK [2])
are not implemented for those environments, and it seems useful to programme
these linear algebra libraries over networks of processors [3. 4. 5. 6. 7]. The
implementation of these algorithms can be done over programming environments
like PVM [8] or MPI [9]. which makes the work easier, although they do not
take advantage of all the power of the equipment. The communications libraries
utilized have been the free access libraries PVM version 3.4 and MPICH [10]
(which 1s an implementation of MPI) version 1.0.11.

The results obtained using other systems or libraries could be different. but
we are interested in the general behaviour of netwotk of processors, and more
particularly Local Area Networks (LANs). when solving Linear Algebra Prob-
lems. Qur intention is to design a library of parallel linear algebra routines for
LANs (we could call this library LANLAPACK). and we are working in Lin-
ear System Solvers [11] and Eigenvalue Solvers. In this paper some preliminary
studies of Eigenvalue Solvers are shown. These problems are of great interest
in different fields in science and engineering, and it is possibly better to solve
them with parallel programming due to the high cost of computation [12]. The
Eigenvalue Problem is still open in parallel computing, where it is necessary
to know the eigenvalues efficiently and exactly. For that, we have carried out
a study on the development of five methods to calculate eigenvalues over two
different environments: PVM and MPI, and using networks with both Ether-
net and Fast-Ethernet connections. Experiments have been performed in four
different svstems:

— A network of 5 SUN Ultra 1 140 with Ethernet connections and 32 Mb of
memory on each processor.

~ A network of 7 SUN Sparcstation with Ethernet connections and 8 Mb of
memory on each processor.

- A network of 12 PC 486, with Ethernet connections, a memory of & Mb on
each processor, and using Linux.

— A network of 6 Pentiums, with Fast-Ethernet connections. a memory of 32
Mb on each processor, and using Linux.

In this paper we will call these systems SUNUltra, SUNSparc. PC'486 and Pen-
tium, respectively. . :

The approximated cost of floating point operations working with double pro-
cision numbers and the theoretical cost of communicating a double precision
number, in the four systems, is shown in table 1. The arithmetic cost has been
obtained with medium sized matrices (stored in main memory). Also the quo-
‘tient of the arithmetic cost with respect to the communication cost is shown.
These approximations are presented to show the main characteristics of the four
systems, but they will not be used to predict execution times because in net-
works of processors many factors, which are difficult to measure. influence the
execution time: collisions when accessing the bus, other users in the system.
assignation of processes to processors ... The four systems have also different
utilization characteristics: SUNUltra can be isolated to obtain results, but the
other three are shared and it is more difficult to obtain representative results.

168

VECPAR’98 - 3rd International Meeting on Vector and Parallel Processing

Table 1. Comparison of arithmetic and communication costs in the four systems uti-
lized.

floating point cost{word — sending time quotient
SUNUltra 0.025 us 0.8 us 32
SUN Sparc 0.35 ps 0.8 us 2,28
PC486 0.17 ps 0.8 us 1.7
Pentium 0.062 us 0.08 us 1.29
given vo
FOR i =1.2....
ri = Avi-y
Bi =l ri floc
v = %l‘-
ENDFOR

Fig. 1. Scheme of the sequential Power method.

2 Eigenvalue Solvers

Methods of partial resolution (the calculation of some eigenvalues and/or ei-
genvectors) of Eigenvalue Problems are studied: the Power method, deflation
technique. Givens algorithm.and Davidson method; and also the Jacobi method
to compute the complete spectrum. We are interested in the parallelization of
the methods on networks of processors. Mathematical details can be found in
many books ([13. 14. 15. 16]).

Power method. The Power method is a very simple method to compute the
eigenvalue of biggest absolute value and the associated eigenvector. Some vari-
ations of the method allow us to compute the eigenvalue of lowest absolute value
or the eigenvalue nearest to a given number. This method is too slow to be con-
sidered as a good method in general. but in some cases it can be useful. In spite
of the bad behaviour of the method. it is very simple and will allow us to begin
to analyse Eigenvalué Solvers on networks of processors.

A scheme of the algorithm is shown in figure 1. The algorithm works by
generating a succession of vectors v; convergent to an eigenvector ¢; associated
to the eigenvalue \;. as well as another succession of values 3. convergent to the
eigenvalue A;. The speed of convergency is proportional to —i‘]

Each iteration in the algorithm has three parts. The most expensive is the
multiplication matrix-vector. and in order to parallelize the method the atten-
tion must be concentrated on that operation. In the parallel implementation. a

169

FEUP - Faculdade de Engenharia da Universidade do Porto

master:
given vo

broadcast v,—; to the slaves

receive r,“")

Buo=ri I

compute norm

broadcast norm to the slaves

IF convergence not reached
Ty

o= 5

EN

from the slaves, and form r,

ENDIF
ENDFOR

slave k, with k=0,1,...,p—1:

receive v;—; from master

R

send r‘(k’ to master

receive norm from master
ENDFOR

Fig. 2. Scheme of the parallel Power method.

master-slave scheme has been carried out. Matrix A4 is considered distributed
between the slave processes in a block striped partition by rows [17]. A possible
scheme of the parallel algorithm is shown in figure 2. The multiplication matrix-
vector is performed by the slave processes. but the master obtains i3; and forms
v;. These two operations of cost O(n) could be done in parallel in the slaves. but
it would generate more communications. which are very expensive operations in
networks of processors.

- 2
2n

The arithmetic cost of the parallel method is: =+ In flops. and the the-
oretical efficiency is 100% .

The cost of communications varies with the way in which they are performed.
When the distribution of vector v; and the norm is performed using a broadcast
operation. the cost of communications per iteration is: 27 (p) + 3 (p)(n+ 1)+ 7+
3n. where 7 and 3 represent the start-up and the word-sending time. respect-
ively, and m(p) and 3s(p) the start-up and the word-sending time when using
a broadcast operation on a system with p slaves. If the broadcasts are replaced
by point to point communications the cost of communications per iteration is
r(2p+ 1)+ 3(pn+n+p). Which method of communication is preferable depends
on the characteristics of the environment {the communication library and the
network of processors) we are using.

170

VECPAR'98 - 3rd International Meeting on Vector and Parallel Processing

The parallel algorithm is theoretically optimum if we only consider efficiency.
but when studying scalability. the isoefficiency function is n x p*, and the scalab-
ility is not very good. This bad scalability is caused by the use of a shared bus
which avoids sending data at the same time. Also the study of scalability is not
useful in this type of system due to the reduced number of processors.

We will experimentally analyse the algorithm in the most and the least ad-
equate systems for parallel processing (Pentium and SUNUltra. respectively).
In table 2 the execution time of the sequential and the parallel algorithms on
the two systems is shown, varying the number of slaves and the matrix size.
Times have been obtained for random matrices. and using PVM and the routine
pvmmcast to perform the broadcast in figure 2. The results greatly differ in the
two systems due to the big difference in the proportional cost of arithmetic and
communication operations. Some conclusions can be obtained:

- Comparing the execution time of the sequential and the parallel algorithms
using one slave, we can see the very high penalty of com munications in these
systems. especially in SUNUltra.

_ The best execution times are obtained with a reduced number of processors
because of the high cost of communications. this number being bigger in
Pentium, The best execution time for each system and matrix size is marked
in table 2.

— The availability of more potential memory is an additional benefit. of parallel
processing. because it allows us to solve bigger problems without swapping.
For example! the parallel algorithm in SUNUItra is quicker than the sequen-
tial algorithm only when the matrix size is big and the sequential execution
produces swapping.

— The use of more processes than processors produces in Pentium with big
matrices better results than one process per processor. and this is because
communications and computations are better overlapped.

The basic parallel algorithm (figure 2) is very simple but it is not optimized
for a network of processors. We can try to improve communications in at least
two ways:

— The broadcast routine is not optimized for networks. and it could be hetter
if we replace this routine by point to point communications.

— The diffusion of the norm and the vector can be assembled in only one
communication. In that way more data are transferred because the last vector
need not be sent, but less communications are performed.

n table 3 the execution time of the basic version (version 1), the version with
point to point communications (version 2), and the version where the diffusion of
norm and vector are assembled (version 3) are compared. Versions 2 and 3 reduce
the execution time in both systems. and the reduction is clearer in SUNUltra
because of the bigger cost of communication in this system.

Until now. the results shown have been those obtained with PVM. but the
use of MPI produces better results (obviously it depends on the versions we
are using). In table 4 the execution time obtained with the basic version of the

171

FEUP - Faculdade de Engenharia da Universidade do Porto

Table 2. Execution time {in seconds) of the Power method using PVM. varving the
number of processors and the matrix size.

[sequential]1 slave|2 slaves|3 slaves|d slaves[5 slaves|6 slaves|[7 slaves[# slaves|

SUNUltra
300 0.069] 0.149] 0.255] 0.289| 0.381| 0.547} 0.526] 0.552 0.63%
600 0.292! 0.497| 0.450] 0.491| 0.629{ 0.864| 0.838] 0.%49{ 0.954
900 0.599!] 0.882| 0.679| 0.735] 1.065] 1.491] 1.457| 1.28%; 1.603
1200 4211 T.5820 1.277| 1.062{ 1.426{ 1.722{ 1.940{ 2.004
1500 23.613{54.464] 1.481| 1.796] 1.901] 2.233] 2.324] 2.421
Pentium
300 0.172] 0.281] 0.250| 0.188} 0.292| 0.323] 0.407| 0.405{ 0.436
G600 0.592} 1.153] 0.639| 0.569| 0.60% 0.682} 0.599] 0.662f 0.656
900 1.302| 1.762| 1.903| 1.272| 0.908| 0.892| 0.842| 0.891| 1.171
1200 2.138] &.141(1.544] 1.750f 1.568| 1.224| 1.275| 1.231| 1.169
1500 3.368]|254.421 2.776| 1.904] 4.017] 2.431] 1.911} 1.750| 1.680

Table 3. Comparison of the execution time of the Power method using PV'M. with
different communication strategy.

2 slaves

3 slaves

4 slaves

ver l[ver ‘2| ver 3

ver 1| ver ’2] ver 3| ver 1

[ver 2] ver 3

SUNUltra

300 [{0.255| 0.187]0.168}{0.289| 0.262{0.187]|0.381| 0.339(0.203
600 |{0.450| 0.418/0.363}|0.491| 0.430{0.386{]0.629(0.605|0.341
900 |{0.679] 0.570|0.566(|0.735| 0.666(0.567{|1.065| 0.68R|0.542
1200{(1.277| 1.089/0.877(|1.062| 1.045(0.854|1.426{ 0.949|0.911
Pentium
300 [{0.250]0.157] 0.271|(0.18%| 0.188{0.141{0.292| 0.2940.192
G600 [/0.63910.574| 0.585(/0.569[0.516{ 0.599{{0.60&} 0.603{0.557
900 1|1.903{1.879] 2.714({1.27210.983{ 1.090{{0.908{0.813} 0.955

programme using MPI on SUNUltra is shown. Comparing this table with table 2
we can see the programme with MPI works better when the number of processors
increases.

Deflation technigue. Deflation technique is used to compute the next eigen-
value and its associated eigenvector starting from a previously known one. This
technique is used to obtain some eigenvalues and it is based on the transform-
ation of the initial matrix to another one that has got the same eigenvalues.
replacing A; by zero.

To compute numEV eigenvalues of the matrix 1. the deflation technique can

172

VECPAR’98 - 3rd International Meeting on Vector and Parallel Processing

N

Table 4. Execution time (in seconds) of the Power method using MPI, varving the
number of processors and the matrix size. on SUNUIltra.

1 slavel? slaves|3 slaves|d slaves|5 slaves|6 slaves
300 0.15 0.14 0.22 0.28 0.27 0.38
GO0 0.39 0.31 0.31 0.37 0.55 0.62
900 0.73 0.52 0.47 0.56 0.61 0.66
1200 3.58 0.76 0.70 0.71 0.79 0.93
1500f 22.16 1.37 0.97 0.99 1.06 0.94

A=A

FOR i =1.2,.... numEV
compute by the Power method A, and ¢
update matrix A: Ag1 = B A,

()

compute ¢, from qf')
ENDFOR

Fig. 3. Scheme of the deflation technique.

be used performing numEV steps (figure 3), computing in each step, using the
Power method. the biggest eigenvalue ();) and the corresponding eigenvector

(q,(i)) of a matrix 4;. with 4; = A. Each matrix Aj41 is obtained from matrix

A; using qf-'], which is utilized to form matrix Bit1:

[10---0 —g3 0---0]
010 —ga 0---0

OOI—QL_10

Bis1=100...0 0 0---0
0

OU"'U—({[,‘.{_ll"'

100---0 =g, 0---1
(i)'
where q;"' = (q1.. .- qk=1. Lghgr. - Gn)-
The eigenvalue); is the biggest eigenvalue in absolute value of matrix A;.
and it is also the 7-th eigenvalue in absolute value of matrix A."The eigenvector
¢; associated to the eigenvalue A; in matrix A is computed from the eigenvector

r/,(-z) associated to A; in the matrix ;. This computation is performed repeatedly

(w)
) ety ah g e

applying the formula ¢i*’ = g gy’ where a’kw‘ is the k-th
=

173

FEUP - Faculdade de Engenharia da Universidade do Porto

Table 5. Execution time (in seconds) of the deflation method using PV M, varving the
number of processors and the matrix size. when computing 5% of the eigenvalues.

[Jsequential1 slave]2 slaves[3 slaves[4 slaves|5 slaves|

SUNUitra
300 11.4f 296 25.2 28.5 32.4 33.7
GO0 184.7(308.3| 239.7| 2521 24421 2732
900 914.4[1258.3] R62.5| 826.6| 765.7| 8&31.0
Pentium
300 25.00 324 29.9 23.0 224 22.2
600 407.0| 462.4] 28R.9] 239.5] 195.8] 194.6
900 2119.0]2316.5| 1460.3| 993.7 823.2| 720.7

column of matrix 4,,. with & the index where qfﬁ“) =1

The most costly part of the algorithm is the application of the Power method.
which has a cost of order O (n?) per iteration. Therefore. the previously ex-
plained Power method can be applied using a scheme master-slave. The cost of
the deflation part (update matrix) is 2n* flops, and the cost of the computation
of 4; depends on the step and is 5n(i — 1) flops. These two parts can be per-
formed simultaneously in the parallel algorithm: the master process computes «;
while the slaves processes update matrix A;. The deflation part of the parallel
algorithm (update matrix and compute g¢;) is not scalable if a large number of ei-
genvalues are computed. As we have previously mentioned. scalability is not very
important in these types of systems. In addition, this method is used to compute
only a reduced number of eigenvalues, due to its high cost when computing a
large number of them.

In table 5 the execution time of the sequential and parallel algorithms are
shown on SUNUltra and Pentium, using PVM and the basic version of the Power
method. Compared with table 2, we can see the behaviour of the parallel Power
and deflation algorithms is similar. but that of the deflation technique is better.
due to the high amount of computation. the work of the master processor in the
deflation part of the execution and the distribution of data between processes in
the parallel algorithm.

Davidson method. The Power method is a very simple but not very useful
method to compute the biggest eigenvalue of a matrix. Other more efficient
methods. as for example Davidson methods [18] or Conjugate Gradient methods
[19. 20]. can be used.

The Davidson algorithm lets us compute the highest eigenvalue (in absolute
value) of a matrix. though it is especially suitable for large. sparse and symmetric
matrices. The method is valid for real as well as complex matrices. It works by
building a sequence of search subspaces that contain. in the limit. the desired
eigenvector. At the same time these subspaces are built. so approximations to
the desired eigenvector in the current subspace are also built.

174

VECPAR'98 - 3rd International Meeting on Vector and Parallel Processing

to =1
given v;
k=1
WHILE convergence not reached
V= [\"k-—-l [l‘k]
orthogonalize V} using modified Gram-Schmith
compute Hj = Vi AV}
compute the highest eigenpair (B .yr) of Hy
obtain the Ritz vector ur = Viyx
compute the residual rx = Aux — O uk
IF k = Fmasr
reinitialize
ENDIF
obtain vi41 = (61 — D)_1 s
k=Fk+1
ENDWHILE

Fig. 4. Scheme of the sequential Davidson method.

Figure 4 shows a scheme of a sequential Davidson method. In successive
steps a matrix 1% with & orthogonal column vectors is formed. After that, mat-
rix Hiy = VAV 18 formed and the biggest eigenvalue in absolute value (4;)
and its associated eigenvector (yx) are computed. This can be done using the
Power method. because matrix Hy is of size k x k and k can be kept small

using some reinitialization strategy (when k = kpor the process is reinitial-
ized). The new vector vy 41 to be added to the matrix V% to form Vj41 can be
obtained with the succession of operations: ux = Viys. 7v = Aup — 0wy and

g1 = (On1 — D)~ ry. with D the diagonal matrix which has in the diagonal
the diagonal elements of matrix 4.

To obtain a parallel algorithm the cost of the different parts in the sequen-
tial algorithm can be analysed. The only operations with cost O (n?) are two
matrix-vector multiplications: AVy in the computation of Hy and Aug in the
computation of the residual. AV} can be accomplished in order O (n*) because
it can be decomposed as [4Vi-1 Avg]. and AV, was computed in the previ-
ous step. The optimum value of kpqr varies with the matrix size and the type
of the matrix. but it is small and it is not worthwhile to parallelize the other
parts of the sequential algorithm. Therefore. the parallelization of the Davidson
method is done basically in the same way as the Power method: parallelizing
matrix-vector multiplications.

This method has been parallelized using a master-slave scheme (figure 5).
working all the processes in the two parallelized matrix-vector multiplications.
and performing the master process non parallelized operations. In that way.

175

FEUP - Faculdade de Engenharia da Universidade do Porto

master:

1o =

given v

k=1

WHILE convergence not reached
Vi = [Vier u]
orthogonalize V) using modified Gram-Schmith
send vy to slaves
in parallel compute Av; and accumulate in the master
compute Hi = Vi (AVk)
compute the highest eigenpair (8x.ys) of Hy
obtain the Ritz vector uy = Viyx
send ux to slaves
in parallel compute Aux and accumulate in the master
compute the residual ry = Aup — Orux

IF k = kmaz
reinitialize
ENDIF
obtain Ty = (Hkl —_ D)_l Tk
k=k+1
ENDWHILE

slave k, with k=1..... p—1:
WHILE convergence not reached
receive v;x from master
in parallel compute Avy and accumulate in the master
receive ur from master
in parallel compute Aur and accumulate in the master

IF k = kimax
reinitialize
ENDIF
k=h+1
ENDWHILE

Fig. 5. Scheme of the parallel Davidson method.

matrix A is distributed between the processes and the result of the local matrix-
vector multiplications is accumulated in the master and distributed from the
master to the other processes.

Because the operations parallelized are matrix-vector multiplications. as in
the Power method. the behaviour of the parallel algorithms must be similar. but
better results are obtained with the Davidson method because in this case the
master process works in the multiplications.

Table 6 shows the execution time of 50 iterations of the Davidson method

176

VECPAR'98 - 3rd International Meeting on Vector and Parallel Processing

Table 6. Execution time of the Davidson method using MPI. varving the number of
processors and the matrix size, on PC4&6.

sequ| p=2] p=3] p=4| p=5| p=6 p=7| p=R
300/0.04%]0.051]0.048]0.045{0.043({0.041|0.041} 0.042
GO0 0.129|0.097]0.083]0.076] 0.072{ 0.065|0.064
900 0.165]0.131{ 0.118} 0.119]0.112

for symmetric complex matrices on PC486 and using MPI, varying the number
of processors and the matrix size.

Givens algorithm or bisection. As we have seen in previous paragraphs, on
parallel Eigenvalue Solvers whose cost is of order O (n*) only a smail reduction
in the execution time can be achieved in networks of processors in some cases:
when the matrices are big or the quotient between the cost of communication
and computation is small.

In some other Eigenvalue Solvers the behaviour is slightly better. For ex-
ample. the bisection method is an iterative method to compute eigenvalues in
an interval or the k biggest eigenvalues. It is applicable to symmetric tridiag-
onal matrices. This method is especially suitable to be parallelized, due to the
slight communication between processes, which factor increases the total time
consumed ‘in a network. When computing the eigenvalues in an interval, the
interval is divided in subintervals and each process works in the computation
of the eigenvalues in a subinterval. When computing the k biggest eigenvalues.
each slave knows the number of eigenvalues it must compute. After that. com-
munications are not necessary but inbalance is produced by the distribution of
the spectrum. More details on the parallel bisection method are found in [21].

The eigenvalues are computed by the processes performing successive itera-
tions. and each iteration has a cost of order O(n). Despite the low computational
cost good performance is achieved because communications are not necessary
after the subintervals are broadcast. Table 7 shows the efficiency obtained using
this method to calculate all the eigenvalues or only 20% of them. on SUNUltra
and SUNSparc for matrix size 100. The efficiencies are clearly better than in the
previous algorithms, even with small matrices and execution time.

Jacobi method. The Jacobi method for solving the Symmetric Eigenvalue Prob-
lem works by performing successive sweeps. nullifying once on each sweep the
n{n — 1)/2 nondiagonal elements in the lower-triangular part of the matrix.

It is possible to design a Jacobi method considering the matrix 4 of size
n x n. dividing it into blocks of size 1 x t and doing a sweep on these blocks.
regarding each block as an element. The blocks of size ¢ x 1 are grouped into
blocks of size 2kt x 2kt and these blocks are assigned to the processors in such
a way that the load is balanced. Parallel block Jacobi methods are explained in
more detail in [22].

177

FEUP - Faculdade de Engenharia da Universidade do Porto

Table 7. Efficiency of the Givens method using PVN. varving the number of proces-
sors, on SUNUltra and SUNSparc. with matrix size 100.

p= ‘2[]) = 3|p = 4|p =5|p= ';']p = .’llp = -4[p=>s

all the eigenvalues |[20% of the cigenvalues
SUNUltrall 0.72 0.63] 0.55| 0.49{] 0.52| 0.3%| 0.26] 0.19
SUNSparce|| 1.17| 0.94] 0.60} 0.64|| 0.81} 0.61| 0.36] 0.37

Table 8. Theoretical speed-up of the Jacobi method. varying the number of processes
and processors.

])='3]’):3]):4[):5]9:6[):7]J=8]J=9p=10
3 2 2 2 2 2 2 2 2 2
6 3 3| 4.5 4.5 4.5] 4.5| 4.5 4.5
10 4 4] 5.3 3.3 & & 8

In order to obtain a distribution of data to the processors. an algorithm for
a logical triangular mesh can be used. The blocks of size 2kt x 2kt must be
assigned to the processors in such a way that the work is balanced. Because the
most costly part of the execution is the updating of the matrix. and nondiagonal
blocks contain twice more elements to be nullified than diagonal blocks. the load
of nondiagonal blocks can be considered twice the load of diagonal blocks.

Table 8 shows the theoretical speed-up of the method when logical meshes of
3. 6 or 10 processes are assigned to a network. varying the number of processors
in the network from 2 to 10. Higher theoretical speed-up is obtained increasing
the number of processes. This produces better balancing. but also more com-
munications and not always a reduction of the execution time. It can be seen in
table 9. where the execution time per sweep for matrices of size 384 and 76% is
shown, varying the number of processors and processes. The shown results have
leen obtained in PC486 and SUNUltra using MPI, and the good behaviour of
the parallel algorithm is observed because a relatively large number of processors
can be used reducing the execution time.

3 Conclusions

Our goal is to develop a library of linear algebra routines for LANs. In this paper
some previous results on Eigenvalue Solvers are shown. The characteristics of the
environment propitiate small modifications in the algorithms to adapt them to
the svstem. In these environments we do not generally have many processors.
and also, when the number of processors goes up. efficiency unavoidably goes
down. For these reasons. when designing algorithms for networks of processors
it is preferable to think on good algorithms for a small number of processors.

178

VECPAR'98 - 3rd International Meeting on Vector and Parallel Processing

Table 9. Execution time per sweep of the Jacobi method on PC486 and SUNUlra
using MPL.

r] p:ll])='_'_’| p=3]]3:41 1):5]]):6] p:T\]):8]]):9[]):|0J
SUNUltra: 3%4 (non swapping)

1] 6.25
3 4.78| 4.55
6 7.08] 7.31] R.26
SUNUltra: 768 (non swapping)
1 {50.78

28.37(25.50
39.51|33.11|32.18

PC48G: 3%4 (non swapping)

1 143.26

3 30.32| 26.81

6 2%.01]23.15{19.81{18.53

10 42.20[27.15130.79]21.46{19.82115.,49]17.44
PC48G: 7GR (swapping)

1 |GO8.8

3 217.4] 195.6

G 187.2{142.1{111.6{104.6

10 158.9/145.6/106.5| 96.9] 83.5| 76.5| 72.5

and not on scalable algorithms. Because of the great influence of the cost of
communications. a good use of the available environments -MPI or PVM- is
essential. :

References

L. E. Anderson. Z. Bai. C. Bischof. J. Demmel, J. Dongarra. J. Du Croz. A. Green-
baum. S. Hammarling, A. McKenney. S. Ostrouchov and D. Sorensen. LAPACK
Users ' Guide. SIAM, 1992.

2. ScaLAPACK User's Guide. 1996.

3. L. S. Blackford, J. Choi. A. Cleary, E. D'Azevedo. J. Demmel. [. Dhillon. J. Don-
garra. S. Hammarling. G. Henry. A. Petitet. K. Stanlev. D. Walker and R. €.
Whaley. ScalLAPAGK: A Linear Algebra Library for NMessage-Passing Computers.
In Proceedings of the Eighth SIAM Conference on Parallel Processing for Scientific
Computing. ('D-ROAM. SIAM. 1997.

4. J. Demmel and K. Stanlev. The Performance of Finding Eigenvalues and Eigen-
vectors of Dense Syvmmetric Matrices on Distributed Memory Computers. In D.
H. Bailev. P. E. Bjorstad. J. R. Gilbert. M. V. Mascagni. R. 5. Schreiber. H. D.
Simon. V. J. Torczon and L. T. Watson. editor, Proceedings of the Seventh SI4.M
Conference on Parallel Processing for Scientific Computing. pages 528-533. SIANL
1995.

179

FEUP - Faculdade de Engenharia da Universidade do Porto

5. D. Giménez. M. J. Majado and 1. Verdd. Solving the Symmetric Eigenvalue Prob-
lem on Distributed Memory Systems. In H. R. Arabnia. editor. Proccedings of the
International Conference on Parallel and Distributed Processing Techniques and
Applications. PDPTA 97 pages T44-747. 1997,

6. INuo-Chan Huang. Feng-Jian Wang and Pei-Chi Wu. Parallelizing a Level 3 BLAS

Library for LAN-Connected Workstations. Journal of Parallel and Distributed Com-

puting, 38:28-36. 1996.

Gen-Ching Lo and Yousef Saad. Iterative solution of general sparse linear svstems

on clusters of workstations. May 1996.

8. A. Geist, A. Begelin, J. Dongarra, W. Jiang. R. Manchek and V. Sunderam. Parallel
Virtual Machine. A User’s Guide and Tutorial for Networked Parallel Computing..
The MIT Press. 1995.

9. Message Passing Interface Forum. A Message-Passing Interface Standard. Interna-
tional Journal of Supercomputer Applications. (:3). 1994,

10. Users guide to mpich. preprint.

11. F. J. Garcia and D. Giménez. Resolucién de sistcmas triangulares de ecuaciones
lineales en redes de ordenadores. Facultad de Informatica. Universidad de Murcia.
1997.

. 12. A. Edelman. Large dense linear algebra in 1993: The parallel computing influence.
The International Journal of Supercomputer Applications. 7(2):113-128, 1993,

13. G. H. Golub and C. F. Van Loan. Matrir Computations. The Johns Hopkins
University Press, 1989. Segunda Edicién.

14. L. N. Trefethen and D. Bau 11l. Numerical Linear Algebra. SIAM, 1997.

15. David S. Watkins. Matriz Computations. John Wiley & Sons, 1991.

16. J. H, Wilkinson. The Algebraic Eigenvalue Problem. Clarendon Press. 1965.

17. V. KKumar. A. Grama. A. Gupta and G. Karvpis. Introduction to Parallel Com-
puting. Design and Analysis of Algorithms. The Benjamin Cummings Publishing
Company, 1994.

18. E. R. Davidson. The Iterative Calculation of a Few of the Lowest Eigenvalues
and Corresponding Eigenvectors of Large Real-Symmetric Matrices. Jowrnal of
Computational Physics, 17:87-94, 1975.

19. W. W. Bradbury and R. Fletcher. New lterative Methods for Solution of the
Eigenproblem. Numerische Mathematik, 9:259-267, 1966.

20. A. Edelman and S. T. Smith. On conjugate gradient-like methods for eigenvalue-
like problems. BIT. 36(3):494-508. 1996.

21. J. M. Badia and A. M. Vidal. Exploiting the Parallel Divide-and-Conguer Method
to Solve the Symmetric Tridiagonal Eigenproblem. In Proceedings of the Sixth Eur-
omicro Workshop on Parallel and Distributed Processing. Madrid. January 21-23.
1998,

22, D. Giménez. V. Hernandez and A. M. Vidal. A Unified Approach to Parallel
Block-Jacobi Methods for the Symmetric Eigenvalue Problem. In Proceedings of
VECPAR'98. 1998,

~¥

This article was processed using the IATEN macro package with LLNCS style

180

VECPAR’98 - 3rd International Meeting on Vector and Parallel Processing

Parallel Domain-Decomposition Preconditioning
for Computational Fluid Dynamics

Timothy J. Barth!, Tony F. Chan®*, and Wei-Pai Tang3**

1 NASA Ames Research Center, Mail Stop T27A-1,Moffett Field, CA 94035, USA
barthOnas.nasa.gov
2 UCLA Department of Mathematics, Los Angeles, CA 90095-1555, USA
chan@math.ucla.edu
3 University of Waterloo Department of Computer Science, Waterloo, Ontario N2L
3G1, Canada wptang@bz.uwaterloo.ca

Abstract. Algebraic preconditioning algorithms suitable for computa-
tional fluid dynamics (CFD) based on overlapping and non-overlapping
domain decomposition (DD) are considered. Specific distinction is given
to techniques well-suited for time-dependent and steady-state computa-
tions of fluid flow. For time-dependent flow calculations, the overlapping
Schwarz algorithm suggested by Wu et al. [28] together with stabilized
(upwind) spatial discretization shows excellent scalability and parallel
performance without requiring a coarse space correction. For steady-
state flow computations, a family of non-overlapping Schur complement
DD techniques are developed. In the Schur complement DD technique,
the triangulation is first partitioned into a number of non-overlapping
subdomains and interfaces. A permutation of the mesh vertices based
on subdomains and interfaces induces a natural 2 x 2 block partitioning
of the discretization matrix. Exact LU factorization of this block sys-
tem introduces a Schur complement matrix which couples subdomains
and the interface together. A family of simplifying techniques for con-
structing the Schur complement and applying the 2 x 2 block system as
a DD preconditioner are developed. Sample fluid flow calculations are
presented to demonstrate performance characteristics of the simplified
preconditioners.

1 Overview

The efficient numerical simulation of compressible fluid flow about complex ge-
ometries continues to be a challenging problem in large scale computing. Many

* The second author was partially supported by the National Science Foundation grant
ASC-9720257, by NASA under contract NAS 2-96027 between NASA and the Uni-
versities Space Research Association (USRA).

** The third author was partially supported by NASA under contract NAS 2-96027

between NASA and the Universities Space Research Association (USRA), by a Nat-
ural Sciences and Engineering Research Council of Canada and by the Information
Technology Research Centre which is funded by the Province of Ontario.

181

FEUP - Faculdade de Engenharia da Universidade do Porto

computational problems of interest in combustion, turbulence, aerodynamic per-
formance analysis and optimization will require orders of magnitude increases
in mesh resolution and/or solution degrees of freedom (dofs) to adequately re-
solve relevant fiuid flow features. In solving these large problems, issues such as
algorithmic scalability ! and efficiency become fundamentally important. Fur-
thermore, current computer hardware projections suggest that the needed com-
putational resources can only be achieved via parallel computing architectures.
Under this scenario, two algorithmic solution strategies hold particular promise
in computational fluid dynamics (CFD) in terms of complexity and implemen-
tation on parallel computers: (1) multigrid (MG) and (2) domain decomposition
(DD). Both are known to possess essentially optimal solution complexity for
model discretized elliptic equations. Algorithms such as DD are particularly
well-suited to distributed memory parallel computing architectures with high
off-processor memory latency since these algorithms maintain a high degree of
on-processor data locality. Unfortunately, it remains an open challenge to ob-
tain similar optimal complexity results using DD and/or MG algorithms for
the hyperbolic-elliptic and hyperbolic-parabolic equations modeling compress-
ible fiuid flow. In the remainder of this paper, we report on promising domain
decomposition strategies suitable for the equations of CFD. In doing so, it is
important to distinguish between two types of flow calculations:

1. Steady-state computation of fluid flow. The spatially hyperbolic-elliptic na-
ture of the equations places special requirements on the solution algorithm.
In the elliptic-dominated limit, global propagation of decaying error infor-
mation is needed for optimality. This is usually achieved using either a coarse
space operator (multigrid and overlapping DD methods) or a global interface
operator (non-overlapping DD methods). In the hyperbolic-dominated limit,
error components are propagated along characteristics of the flow. This sug-
gests specialized coarse space operators (MG and overlapping DD methods)
or special interface operators (non-overlapping DD methods). In later sec-
tions, both overlapping and non-overlapping DD methods are considered in
further detail.

2. Time-dependent computation of fluid flow. The hyperbolic-parabolic nature
of the equations is more forgiving. Observe that the introduction of numer-
ical time integration implies that error information can only propagate over
relatively small distances during a given time step interval. In the context
of overlapping DD methods with backward Euler time integration, it be-
comes mathematically possible to show that scalability is retained without
a coarse space correction by choosing the time step small enough and the
subdomain overlap sufficiently large enough, cf. Wu et al. [28]. Section 5.3
reviews the relevant theory and examines the practical merits by performing
time-dependent Euler equation computations using overlapping DD with no
coarse space correction.

! the arithmetic complexity of algorithms with increasing number of degrees of freedom

182

VECPAR'98 - 3rd International Meeting on Vector and Parallel Processing

2 Scalability and Preconditioning

To understand algorithmic scalability and the role of preconditioning, we think
of the partial differential equation (PDE) discretization process as producing
linear or linearized systems of equations of the form

Az —b=0 Q)

where A is some large (usually sparse) matrix, b is a given right-hand-side vec-
tor, and z is the desired solution. For many practical problems, the amount of
arithmetic computation required to solve (1) by iterative methods can be esti-
mated in terms of the condition number of the system x(A). If A is symmetric
positive definite (SPD), the well-known conjugate gradient method converges at
a constant rate which depends on &. After n iterations of the conjugate gradient
method, the error € satisfies

levlle (V/AA =T\ @
i€l = \Ved+1)

For most applications of interest in computational fluid dynamics, the condi-
tion number associated with A depends on computational parameters such as
the mesh spacing h, added stabilization terms, and/or artificial viscosity coeffi-
cients. In addition, x(A) can depend on physical parameters such as the Peclet
number and flow direction as well as the underlying stability and well-posedness
of the PDE and boundary conditions. Of particular interest in algorithm de-
sign and implementation is the parallel scalability experiment whereby a mesh
discretization of the PDE is successively refined while keeping a fixed physical
domain so that the mesh spacing h uniformly approaches zero. In this setting,
the matrix A usually becomes increasingly ill-conditioned because of the depen-
dence of k(A) on h. A standard technique to overcome this ill-conditioning is to
solve the prototype linear system in right (or left) preconditioned form

(AP~Y)Pz-b=0. 3)

The solution is unchanged but the convergence rate of iterative methods now
depends on properties of AP~!. Ideally, one seeks preconditioning matrices P
which are easily solved and in some sense nearby 4, e.g. K(AP~!) = O(1) when
A is SPD. The situation changes considerably for advection dominated problems.
The matrix A ceases to be SPD so that the performance of iterative methods is
not directly linked to the condition number behavior of A. Moreover, the con-
vergence properties associated with A can depend on nonlocal properties of the
PDE. To see this, consider the advection and advection-diffusion problems shown
in Fig. 1. The entrance/exit flow shown in Fig. 1(a) transports the solution and
any error components along 45° characteristics which eventually exit the domain.
This is contrasted with the recirculation flow shown in Fig. 1(b) which has circu-
lar characteristics in the advection dominated limit. In this (singular) limit, any
radially symmetric error components persist for all time. More generally, these

183

FEUP - Faculdade de Engenharia da Universidade do Porto

recirculation error components are removed by the physical cross-wind diffusion
terms present in the PDE or the artificial cross-wind diffusion terms introduced
by the numerical discretization. When the advection speed is large and the cross-
wind diffusion small, the problem becomes ill-conditioned. Brandt and Yavneh
[6] have studied both entrance/exit and recirculation flow within the context of
multigrid acceleration. The behavior of multigrid (or most other iterative meth-

(a) 45° error component transport for (b) Radially symmetric error compo-
entrance/exit flow. nent for recirculating flow.

Fig. 1. Two model advection flows: (a) entrance/exit flow uz +u, =0, (b) recirculating
flow yu, — zuy = lim o eAu.

ods) for these two flow problems is notably different. For example, Fig. 2 graphs
the convergence history of ILU(0)-preconditioned GMRES in solving Cuthill-
McKee ordered matrix problems for entrance/exit flow and recirculation flow
discretized using the Galerkin least-squares (GLS) procedure described in Sect.
3. The entrance/exit flow matrix problem is solved to a 108 accuracy tolerance
in approximately 20 ILU(0)-GMRES iterations. The recirculation flow problem
with € = 10~3 requires 45 ILU(0)-GMRES iterations to reach the 10~ tolerance
and approximately 100 ILU(0)-GMRES iterations with € = 0. This difference in
the number of iterations required for each problem increases dramatically as the
mesh is refined. Using the non-overlapping DD method described in Sect. 5.5,
we can remove the ill-conditioning observed in the recirculating flow problem.
Let Vi denote the set of vertices along a nearly horizontal line from the center
of the domain to the right boundary and Vg the set of remaining vertices in the
mesh, see Fig. 3. Next, permute the discretization matrix so that solution un-
knowns corresponding to Vy are ordered last. The remaining mesh vertices have
a natural ordering along characteristics of the advection operator which renders
the discretization matrix associated with Vs nearly lower triangular. Using the
technique of Sect. 5.5 together with exact factorization of the small {Vy| x [VH|

184

VECPAR'98 - 3rd International Meeting on Vector and Parallel Processing

Schur complement, acceptable convergence rates for ILU(0)-preconditioned GM-
RES are once again obtainable as shown in Fig. 3. These promising results have
strenghthened our keen interest in DD for fluid fiow problems.

Q0. N —— u_x+uy=0
10 —®— yux-xuy=0
.} —O— yu_x-xu_y=.001 (uxx+uyy) |.......

Norm (Ax - b)

105 2 40 60 8 100
GMRES Matrix-Vector Multiplies

Fig. 2. Convergence behavior of ILU(0)-preconditioned GMRES for entrance/exit and

recirculation flow problems using GLS discretization in a triangulated square (1600
dofs).

10

-1

103\

o |
2 00\ e memeen |
% 10 ———
< sl ;
E 10 \»
S 10N E

K] (Y

10 L}

10

., \5Y

10 : :

-10. : B : d

109 s 10 15 20 25 30 35 40

GMRES Matrix-Vector Multiplies

(a) Horizontal vertex set ordered last (b) ILU-GMRES convergence history.
in matrix (circled vertices).

Fig. 3. Sample mesh and ILU-GMRES convergence history using the non-overlapping
DD technique of Sect. 5.5.

185

FEUP - Faculdade de Engenharia da Universidade do Porto

3 Stabilized Numerical Discretization

Non-overlapping domain-decomposition procedures such as those developed in
Sect. 5.5 strongly motivate the use of compact-stencil spatial discretizations
since larger discretization stencils produce larger interface sizes. For this reason,
the Petrov-Galerkin approximation due to Hughes, Franca and Mallet [17,18]
has been used in the present study. Consider the prototype conservation law
system in m coupled independent variables in the spatial domain £ ¢ R? with
boundary surface I" and exterior normal n(z)

us+fL =0, (z,t) € 2 x[0,RY] (4)

(nify)” (u-g) =0, (z,t) €I x[0,R*] (5)

with implied summation over repeated indices. In this equation, u € R™ denotes
the vector of conserved variables and ff € IR™ the inviscid flux vectors. The
vector g can be suitably. chosen to impose characteristic data or surface flow
tangency using reflection principles. The conservation law system (4) is assumed
to possess a generalized entropy pair so that the change of variables u(v) :
R™ — IR™ symmetrizes the system in quasi-linear form

uyv,e + ff,,v,,i =0 (6)

with u, symmetric positive definite and f’v symmetric. The computational
domain {2 is composed of non-overlapping simplicial elements T3, 2 = UT;,
T:NT; = 0, i # j. For purposes of the present study, our attention is restricted to
steady-state calculations. Time derivatives are retained in the Galerkin integral
so that a pseudo-time marching strategy can be used for obtaining steady-state
solutions. The Galerkin least-squares method due to Hughes, Franca and Mallet
[17] can be defined via the following variational problem with time derivatives
omitted from the least-squares bilinear form: Let V* denote the finite element

space V# = {w"lw" € (CO(.Q))m,w"IT € (‘Pk(T))m}.

Find v* € V* such that for all w* € V*

B(vh)wh)yal + B(vhvwh)la + B(vhawh)bc =0 (7)
with
B(v,W)ga = / (wTu(v),t - w?;‘f"(v)) an
7]
B(v,w);; = Z / (ffvw',,.)TT (ff‘,v,z‘.) dfn
Ten’T
B(v,W)e = / wT h(v,g;n) dI"
r
where

h(v_,v4,n) = %(f(u(v_);n) + £(u(vs);n)) - %|A(u(V);n)l(u(v+) —u(v_)).

186

VECPAR’98 - 3rd International Meeting on Vector and Parallel Processing

Inserting standard C° polynomial spatial approximations and mass-lumping of
the remaining time derivative terms, yields coupled ordinary differential equa-
tions of the form:

Du, =R(u), R(u):R" -+ R" (8)

or in symmetric variables
Duyv; = R(u(v)) : 9

where D represents the (diagonal) lumped mass matrix. In the present study,
backward Euler time integration with local time linearization is applied to Eqn.
(8) yielding:

o (e

The above equation can also be viewed as a modified Newton method for solv-
ing the steady-state equation R(u) = 0. For each modified Newton step, a large
Jacobian matrix must be solved. In practice At is varied as an exponential func-
tion ||R(u)|| so that Newton’s method is approached as ||R(u)}| = 0. Since each
Newton iterate in (10) produces a linear system of the form (1), our attention
focuses on this prototype linear form.

4 Domain Partitioning

In the present study, meshes are partitioned using the multilevel k-way parti-
tioning algorithm METIS developed by Karypis and Kumar [19]. Figure 4(a)
shows a typical airfoil geometry and triangulated domain. To construct a non-

D KN
NAAAAKT
'5A'A"'4'A§rv‘5‘.5¢‘ﬁv

AvﬂAV%V:?V‘mv‘v‘v‘v‘

"%
vy
AN

A

RO
IAADRR OO0

v "A' ATy, : AVAVAYAYA X]

I AVAYA o AT YA

ROGAANADRK 5) {

IROAAAND '

Ve O R i i

RPOOOGK] > \

(a) Mesh triangulation (80,000 ele- (b) Mach number solution contours
ments). and partition (bold lines).

Fig. 4. Multiple component airfoil geometry with 16 subdomain partitioning and sam-
ple solution contours (Mo = .20,a = 10°).

187

FEUP - Faculdade de Engenharia da Universidade do Porio

overlapping partitioning, a dual triangulation graph has been provided to the
METIS partitioning software. Figure 4(b) shows partition boundaries and sam-
ple solution contours using the spatial discretization technique described in the
previous section. By partitioning the dual graph of the triangulation, the number
of elements in each subdomain is automatically balanced by the METIS software.
Unfortunately, a large percentage of computation in our domain-decomposition
algorithm is proportional to the interface size associated with each subdomain.
On general meshes containing non-uniform element densities, balancing subdo-
main sizes does not imply a balance of interface sizes. In fact, results shown in
Sect. 6 show increased imbalance of interface sizes as meshes are partitioned into
larger numbers of subdomains. This ultimately leads to poor load balancing of
the parallel computation. This topic will be revisited in Sect. 6.

5 Preconditioning Algorithms for CFD

In this section, we consider several candidate preconditioning techniques based
on overlapping and non-overlapping domain decomposition.

5.1 ILU Factorization

A common preconditioning choice is incomplete lower-upper factorization with
arbitrary fill level k, ILU[k]. Early application and analysis of ILU precondi-
tioning is given in Evans [15], Stone [27] and Meijerink and van der Vorst [21].
Although the technique is algebraic and well-suited to sparse matrices, ILU-
preconditioned systems are not generally scalable. For example, Dupont et al.
[14] have shown that ILU[0] preconditioning does not asymptotically change the
O(h~?) condition number of the 5-point difference approximation to Laplace’s
equation. Figure 5 shows the convergence of ILU-preconditioned GMRES for
Cuthill-McKee ordered matrix problems obtained from diffusion and advection
dominated problems discretized using Galerkin and Galerkin least-squares tech-
niques respectively with linear elements. Both problems show pronounced con-
vergence deterioration as the number of solution unknowns (degrees of freedom)
increases. Note that matrix orderings exist for discretized scalar advection equa-
tions that are vastly superior to Cuthill-McKee ordering. Unfortunately, these
orderings do not generalize naturally to coupled systems of equations which do
not have a single characteristic direction. Some ILU matrix ordering experiments
are given in [10]. Keep in mind that ILU does recluster eigenvalues of the pre-
conditioned matrix so that for small enough problems a noticeable improvement
- can often be observed when ILU preconditioning is combined with a Krylov
projection sequence.

5.2 Additive Overlapping Schwarz Methods

Let V denote the triangulation vertex set. Assume the triangulation has been
partitioned into N overlapping subdomains with vertex sets V;,i = 1,..., N such

188

VECPAR'98 - 3rd International Meeting on Vector and Parallel Processing

Q,
10_‘ wett— 100 dof
10
107"
-3}.... —
Z 10 s
t lo-‘ w
g s <
10 E
£
§ 10 2
Z .
10
g i
10
-9,
10
10,
109 20 40 60
GMRES Matrix-Vector Multiplies GMRES Matrix-Vector Multiplies
(a) Diffusion dominated problem. {(b) Advection dominated problem.

Fig. 5. Convergence dependence of ILU on the number of mesh points for diffusion and
advection dominated problems using SUPG discretization and Cuthill-McKee ordering.

that

V=U¥V.
Let R; denote the rectangular restriction matrix that returns the vector of coef-
ficients in the subdomain §2;, i.e.

zgo, = Riz .

Note that A; = R; ART is the subdomain discretization matrix in §2;. The
additive Schwarz preconditioner P~! from (3) is then written as

N
P'=) RA7'R] .

i=1
The additive Schwarz algorithm [24] is appealing since each subdomain solve can
be performed in parallel. Unfortunately the performance of the algorithm dete-
riorates as the number of subdomains increases. Let H denote the characteristic
size of each subdomain, & the overlap distance, and h the mesh spacing. Dryja
and Widlund [12, 13] give the following condition number bound for the method
when used as a preconditioner for elliptic discretizations

K(AP~') < CH™? (1 + (H/é)z) (11)

where C is a constant independent of H and h. This result describes the dete-
rioration as the number of subdomains increases (and H decreases). With some
additional work this deterioration can be removed by the introduction of a global
coarse subspace with restriction matrix Ro with scale H so that

N
P~' = RyAR] + Y R:AT'R] .

i=1

189

FEUP - Faculdade de Engenharia da Universidade do Porto

Under the assumption of “generous overlap” the condition number bound [12,
13, 8] can be improved to

K(AP™Y) < C(1+ (H/S)) . (12)

The addition of a coarse space approximation introduces implementation prob-
lems similar to those found in multigrid methods described below. Once again,

10 10
- ..©- Distance 1 Overlap . -1 k = : o |
10 TR -~ Distance 2 Overfap | 10 . == 16 Subdomains | :

Norm(A x -b)
o 5 &
/

Norm(A x -b)
N =3

-4
10 10
-5, -S.
10 3 100 200 300 400 109 50 100 150 200
Matrix-Vector Products Matrix-Vector Products
(a) Effect of increasing mesh overlap. (b) Effect of increasing number of sub-
domains.

Fig. 6. Performance of GMRES with additive overlapping Schwarz preconditioning.

the theory associated with additive Schwarz methods for hyperbolic PDE sys-
tems is not well-developed. Practical applications of the additive Schwarz method
for the steady-state calculation of hyperbolic PDE systems show similar dete-
rioration of the method when the coarse space is omitted. Figure 6 shows the
performance of the additive Schwarz algorithm used as a preconditioner for GM-
RES. The test matrix was taken from one step of Newton’s method applied to an
upwind finite volume discretization of the Euler equations at low Mach number
(Ms = .2), see Barth [1] for further details. These calculations were performed
without coarse mesh correction. As expected, the graphs show a degradation in
quality with decreasing overlap and increasing number of mesh partitions.

5.3 Additive Overlapping Schwarz Methods for Time—Dependent
Fluid Flow

We begin by giving a brief sketch of the analysis given in Wu et al. [28] which
shows that for small enough time step and large enough overlap, the additive

Schwarz preconditioner for hyperbolic problems behaves optimally without re-
quiring a coarse space correction.

190

VECPAR’98 - 3rd International Meeting on Vector and Parallel Processing

Consider the model scalar hyperbolic equation for the spatial domain 2 C R¢
with characteristic boundary data g weakly imposed on I’

-g—:+ﬁ-Vu+cu=0, (z,t) € 2 x[0,T) (13)

(B-n(z))” (u~g)=0, z€l

with 8 € R, ¢ > 0, and suitable initial data. Suppose that backward Euler time
integration is employed (u"(z) = u(z,n At)), so that (13) can then be written
as . »

B-Vu+ (c+(At))u"=f

with f = (At)~!u"~1. Next solve this equation using Galerkin’s method (drop-
ping the superscript n): Find u € H'(£2)

(B-Vu,v) + (c+ (A7) (w,v) = (fiv)+ <u—-gv>_ WE HY ()

where (u,v) = [puv dz and < u,v >3= [ruv(8- n(z))* dz. Recall that
Galerkin’s method for linear advection is iso-energetic modulo boundary condi-
tions so that the symmetric part of the bilinear form is simply

Alu,v) = (c+ (A8 (u,v) + -;- (v >4 — <00 >_)

with skew-symmetric portion S(u,v) = % < u,v > —(u,B - Vv). Written in
this form, it becomes clear that the term (c+ (At)~') (u,v) eventually dom-
inates the skew-symmetric bilinear term if At is chosen small enough. This
leads to the CFL-like assumption that |8] At < h'*®, s > 0, see [28]. With
this assumption, scalability of the overlapping Schwarz method without coarse
space correction can be shown. Unfortunately, the assumed CF L-like restric-
tion makes the method impractical since more efficient explicit time advance-
ment strategies could be used which obviate the need for mesh overlap or im-
plicit subdomain solves. The situation changes considerably if a Petrov-Galerkin
discretization strategy if used such as described in Sect. 3. For a the scalar
model equation (13) this amounts to added the symmetric bilinear stabilization
term By,(u,v) = (8- Vu, 78 - Vv) to the previous Galerkin formulation: Find
u€ H(N)

(B-Vu,v)+(8-Vu, 76-Vo)+(c + (A) 1) (u,v) = (f,v)+‘< u—g,v>_ Vv e HY(N)

where 7 = h/(2|]). This strategy is considered in a sequel paper to [28] which
has yet to appear in the open literature. Practical CFD calculations show surpris-
ing good performance of overlapping Schwarz preconditioning when combined
with Galerkin least-squares discretization of hyperbolic systems as discussed in
Sect. 3. Figure 8 shows iso-density contours for Mach 3 flow over a backward-
facing step geometry using a triangulated mesh containing 22000 mesh vertices
which has been partitioned into 1, 4, 16, and 32 subdomains for evaluation pur-
poses. Owing to the nonlinearity of the strong shockwave profiles, the solution

191

FEUP - Faculdade de Engenharia da Universidade do Porto

must be evolved in time at a relatively small Courant number < 20 to prevent
nonlinear instability in the numerical method. On the other hand, the solution
eventually reaches an equilibrium state. (Note that on finer resolution meshes,
the fluid contact surface emanating from the Mach triple point eventually makes
the flow field unsteady.) This test problem provides an ideal candidate scenario
for the overlapping Schwarz method since time accuracy is not essential to reach-
ing the correct steady-state solution. Computations were performed on a fixed

Fig. 7. Iso-density contours for Mach 3 inviscid Euler flow over a backward-facing step
with exploded view of 16 subdomain partitioning.

25 25
Overlap Distance /‘
20 e "E. 2 20
<4 Distance=3

—
w
—
w

—
o

wn
w

Global GMRES lterations Required

Global GMRES Iterations Required
=

0 ; ; — 0 :
0 5 10 15 20 0 5 10 15 20
CFL Number Number of Subdomains
(a) Effect of increasing mesh overlap. (b) Effect of increasing number of sub-

domains (CFL = 15).

Fig. 8. Number of ILU(0)-GMRES iterations required to reduce ||Az — b|| < 107°.

size mesh with 1, 4, 16, and 32 subdomains while also varying the overlap (graph)
distances values and the CFL number. Figure 8(a) shows the effect of increasing

192

VECPAR'98 - 3rd International Meeting on Vector and Parallel Processing

CFL number and subdomain mesh overlap distance on the number of global
GMRES iterations required to solve the global matrix problem to an accuracy
of less than 10~ using additive Schwarz-like ILU(0) on overlapped subdomain
meshes. For CFL numbers less than about 10, the number of GMRES iterations
is relatively insensitive to the amount of overlap. Figure 8(b) shows the effect
of increased mesh partitioning on the number of GMRES iterations required
(assuming a fixed CFL = 15). For overlap distance > 2, the iterative method is
relatively insensitive to the number of subdomains. By lowering the CF L number
to 10, the results become even less sensitive to the number of subdomains.

5.4 Multi-level Methods

In the past decade, multi-level approaches such as multigrid has proven to be one
of the most effective techniques for solving discretizations of elliptic PDEs [29].
For certain classes of elliptic problems, multigrid attains optimal scalability. For
hyperbolic-elliptic problems such as the steady-state Navier-Stokes equations,
the success of multigrid is less convincing. For example, Ref. [20] presents nu-
merical results using multigrid to solve compressible Navier-Stokes flow about
a multiple-component wing geometry with asymptotic convergence rates ap-
proaching .98 (Fig. 12 in Ref. [20]). This is quite far from the usual convergence
rates quoted for multigrid on elliptic model problems. This is not too surpris-
ing since multigrid for hyperbolic-elliptic problems is not well-understood. In
addition, some multigrid algorithms require operations such as mesh coarsen-
ing which are poorly defined for general meshes (especially in 3-D) or place
unattainable shape-regularity demands on mesh generation. Other techniques
add new meshing constraints to existing software packages which limit the over-
all applicability of the software. Despite the promising potential of multigrid for
non-selfadjoint problems, we defer further consideration and refer the reader to
works such as [6, 5].

5.5 Schur Complement Algorithms

Schur complement preconditioning algorithms are a general family of algebraic
techniques in non-overlapping domain-decomposition. These techniques can be
interpreted as variants of the well-known substructuring method introduced by
Przemieniecki [22] in structural analysis. When recursively applied, the method
is related to the nested dissection algorithm. In the present development, we
consider an arbitrary domain as illustrated in Fig. 9 that has been further de-
composed into subdomains labeled 14, interfaces labeled 59, and cross points
z. A natural 2 x 2 partitioning of the system is induced by permuting rows and
columns of the discretization matrix so that subdomain unknowns are ordered
first, interface unknowns second, and cross points ordered last

=izl ()= (%) ™

where zp,z7 denote the subdomain and interface variables respectively. The

193

FEUP - Faculdade de Engenharia da Universidade do Porto

1 2 3 4 56789 «x

g 2 /,'.r}’/)/f
3 /J/
Ty,

o

o

]

(a) Partitioned domain. (b) Induced 2 x 2 block discretization
matrix.

HO@NOAT o

Fig. 9. Domain decomposition and the corresponding block matrix.

block LU factorization of A is then given by

_ _ App O I A‘I—)}DA‘DI
A=LU = [sz I] [0 S , (15)
where
S = A7z - A1pAphADI (16)

is the Schur complement for the system. Note that App is block diagonal with
each block associated with a subdomain matrix. Subdomains are decoupled from
each other and only coupled to the interface. The subdomain decoupling property
is exploited heavily in parallel implementations.

In the next section, we outline a naive parallel implementation of the “exact”
factorization. This will serve as the basis for a number of simplifying approxi-
mations that will be discussed in later sections.

5.6 “Exact” Factorization

Given the domain partitioning illustrated in Fig. 9, a straightforward (but naive)
paralle] implementation would assign a processor to each subdomain and a sin-
gle processor to the Schur complement. Let Z; denote the union of interfaces

surrounding D;. The entire solution process would then consist of the following
steps:

Parallel Preprocessing:

1. Parallel computation of subdomain Ap,p, matrix LU factors.

194

VECPAR’98 - 3rd International Meeting on Vector and Parallel Processing

2. Parallel computation of Schur complement block entries associated with each
subdomain D;

Asfi = AT.’D; A’E’il'D.'AD.'f; : (17)
3. Accumulation of the global Schur complement S matrix
#subdomains
S=Arz-), A48 . (18)
=1
Solution:

Step (1) up; = Ap,p, bp. (parallel)
Step (2) vz, = Az,p, un; 4 (parallel)
Step (3) wz = bz — S bdomains vz, (communication)
Step (4) z7 = S twz (sequential, communication)
Step (5) yp, = Ap, 7, %7, (parallel)
Step (6) zp, = up; — Ap,p, ¥D; (parallel)

This algorithm has several deficiencies. Steps 3 and 4 of the solution process
are sequential and require communication between the Schur complement and
subdomains. More generally, the algorithm is not scalable since the growth in
size of the Schur complement with increasing number of subdomains eventually
overwhelms the calculation in terms of memory, computation, and communica-
tion.

5.7 Iterative Schur Complement‘Algorithms

A number of approximations have been investigated in Barth et al. [2] which
simplify the exact factorization algorithm and address the growth in size of the
Schur complement. During this investigation, our goal has been to develop alge-
braic techniques which can be applied to both elliptic and hyperbolic partial dif-
ferential equations. These approximations include iterative (Krylov projection)
subdomain and Schur complement solves, element dropping and other sparsity
control strategies, localized subdomain solves in the formation of the Schur com-
plement, and partitioning of the interface and parallel distribution of the Schur
complement matrix. Before describing each approximation and technique, we
can make several observations: ‘

Observation 1. (Ill-conditioning of Subproblems) For model elliptic prob-
lem discretizations, it is known in the two subdomain case that k(Ap,D,) =
O((L/h)?) and k(S) = O(L/h) where L denotes the domain size. From this
perspective, both subproblems are ill-conditioned since the condition number
depends on the mesh spacing parameter h. If one considers the scalability ex-
periment, the situation changes in a subtle way. In the scalability experiment,
the number of mesh points and the number’ of subdomains is increased such
that the ratio of subdomain size to mesh spacing size H/h is held constant. The

195

FEUP - Faculdade de Engenharia da Universidade do Porto

subdomain matrices for elliptic problem discretizations now exhibit a O((H/h)?)
condition number so the cost associated with iteratively solving them (with or
without preconditioning) is approximately constant as the problem size is in-
creased. Therefore, this portion of the algorithm is scalable. Even so, it may be
desirable to precondition the subdomain problems to reduce the overall cost.
The Schur complement matrix retains (at best) the O(L/h) condition number
and becomes increasingly ill-conditioned as the mesh size is increased. Thus in
the scalability experiment, it is ill-conditioning of the Schur complement matrix
that must be controlled by adequate preconditioning, see for example Dryja,
Smith and Widlund [11].

Observation 2. (Non-stationary Preconditioning) The use of Krylov pro-
jection methods to solve the local subdomain and Schur complement subprob-
lems renders the global preconditioner non-stationary. Consequently, Krylov pro-
jection methods designed for non-stationary preconditioners should be used for
the global problem. For this reason, FGMRES [23], a variant of GMRES designed
for non-stationary preconditioning, has been used in the present work.

Observation 3. (Algebraic Coarse Space) The Schur complement serves as
an algebraic coarse space operator since the system

Srz =br - AIDABIDI)‘D (19)

globally couples solution unknowns on the entire interface. The rapid propaga-
tion of information to large distances is a crucial component of optimal algo-
rithms.

5.8 ILU-GMRES Subdomain and Schur complement Solves

The first natural approximation is to replace exact inverses of the subdomain
and Schur complement subproblems with an iterative Krylov projection method
such as GMRES (or stabilized biconjugate gradient).

Iterative Subdomain Solves Recall from the exact factorization algorithm
that a subdomain solve is required once in the preprocessing step and twice
in the solution step. This suggests replacing these three inverses with m;, ma,
and m3 steps of GMRES respectively. As mentioned in Observation 1, although
the condition number of subdomain problems remains roughly constant in the
scalability experiment, it still is beneficial to precondition subdomain problems
to improve the overall efficiency of the global preconditioner. By preconditioning
subdomain problems, the parameters m;,m2, m3 can be kept small. This will be
exploited in later approximations. Since the subdomain matrices are assumed
given, it is straightforward to precondition subdomains using ILU[k]. For the
GLS spatial discretization, satisfactory performance is achieved using ILU[2].

196

VECPAR'98 - 3rd International Meeting on Vector and Parallel Processing

Iterative Schur complement Solves It is possible to avoid explicitly com-
puting the Schur complement matrix for use in Krylov projection methods by
alternatively computing the action of S on a given vector p, i.e.

Sp=Azzp— ArpAppApIp - (20)

Unfortunately S is ill-conditioned, thus some form of interface preconditioning is
needed. For elliptic problems, the rapid decay of elements away from the diagonal
in the Schur complement matrix [16] permits simple preconditioning techniques.
Bramble, Pasciak, and Schatz [4] have shown that even the simple block Jacobi
preconditioner yields a substantial improvement in condition number

x(SP;') < CH™% (1 +log?(H/h)) (21)

for C independent of h and H. For a small number of subdomains, this technique
is very effective. To avoid the explicit formation of the diagonal blocks, a number
of simplified approximations have been introduced over the last several years,
see for examples Bjorstad [3] or Smith et al. [26]. By introducing a further coarse
space coupling of cross points to the interface, the condition number is further
improved

K(SP;') < C (1+log’(H/R)) . (22)

Unfortunately, the Schur complement associated with advection dominated dis-
cretizations may not exhibit the rapid element decay found in the elliptic case.
This can occur when characteristic trajectories of the advection equation tra-
verse a subdomain from one interface edge to another. Consequently, the Schur
complement is not well-preconditioned by elliptic-like preconditioners that use
the action of local problems. A more basic strategy has been developed in the
present work whereby elements of the Schur complement are ezplicitly computed.
Once the elements have been computed, ILU factorization is used to precondition
the Schur complement iterative solution. In principle, ILU factorization with a
suitable reordering of unknowns can compute the long distance interactions asso-
ciated with simple advection fields corresponding to entrance/exit-like lows. For
general advection fields, it remains a topic of current research to find reordering
algorithms suitable for ILU factorization. The situation is further complicated
for coupled systems of hyperbolic equations (even in two independent variables)
where multiple characteristic directions and/or Cauchy-Riemann systems can
be produced. At the present time, Cuthill-McKee ordering has been used on all
matrices although improved reordering algorithms are currently under develop-
ment.

In the present implementation, each subdomain processor computes (in par-
allel) and stores portions of the Schur complement matrix

As-fi = fi‘DiA’B}’DiAD;fi : (23)

To gain improved parallel scalability, the interface edges and cross points are
partitioned into a smaller number of generic “subinterfaces”. This subinterface
partitioning is accomplished by assigning a supernode to each interface edge

197

FEUP - Faculdade de Engenharia da Universidade do Porto

Fig. 10. Interface (bold lines) decomposed into 4 subinterfaces indicated by alternating
shaded regions.

separating two subdomains, forming the graph of the Schur complement matrix
in terms of these supernodes, and applying the METIS partitioning software to
this graph. Let Z; denote the j-th subinterface such that Z = U;1;. Computation
of the action of the Schur complement matrix on a vector p needed in Schur
complement solves now takes the (highly parallel) form

#subinter faces #subdomains

sp= % aggo@)- 3 Asa@).
i=1

i=1

Using this formula it is straightforward to compute the action of S on a vec-
tor p to any required accuracy by choosing the subdomain iteration parameter
m; large enough. Figure 10 shows an interface and the immediate neighboring
mesh that has been decomposed into 4 smaller subinterface partitions for a 32
subdomain partitioning. By choosing the number of subinterface partitions pro-
portional to the square root of the number of 2-D subdomains and assigning a
processor to each, the number of solution unknowns associated with each subin-
terface is held approximately constant in the scalability experiment. Note that
the use of iterative subdomain solves renders both Eqns. (20) and (24) approxi-
mate.

In our investigation, the Schur complement is preconditioned using ILU fac-
torization. This is not a straightforward task for two reasons: (1) portions of
the Schur complement are distributed among subdomain processors, (2) the in-
terface itself has been distributed among several subinterface processors. In the
next section, a block element dropping strategy is proposed for gathering por-

198

VECPAR’98 - 3rd International Meeting on Vector and Parallel Processing

tions of the Schur complement together on subinterface processors for use in
ILU preconditioning the Schur complement solve. Thus, a block Jacobi precon-
ditioner is constructed for the Schur complement which is more powerful than
the Bramble, Pasciak, and Schatz (BPS) form (without coarse space correction)
since the blocks now correspond to larger subinterfaces rather than the smaller
interface edges. Formally, BPS preconditioning without coarse space correction
can be obtained for 2D elliptic discretizations by dropping additional terms in
our Schur complement matrix approximation and ordering unknowns along in-
terface edges so that the ILU factorization of the tridiagonal-like system for each
interface edge becomes exact.

Block Element Dropping In our implementation, portions of the Schur com-
plement residing on subdomain processors are gathered together on subinterface
processors for use in ILU preconditioning of the Schur complement solve. In
assembling a Schur complement matrix approximation on each subinterface pro-
cessor, certain matrix elements are neglected:

1. All elements that couple subinterfaces are ignored. This yields a block Jacobi
approximation for subinterfaces.

2. All elements with matrix entry location that exceeds a user specified graph
distance from the diagonal as measured on the triangulation graph are ig-
nored. Recall that the Schur complement matrix can be very dense. The
graph distance criteria is motivated by the rapid decay of elements away
from the matrix diagonal for elliptic problems. In all subsequent calcula-
tions, a graph distance threshold of 2 has been chosen for block element
dropping.

Figures 11(a) and 11(b) show calculations performed with the present non-
overlapping domain-decomposition preconditioner for diffusion and advection
problems. These figures graph the number of global FGMRES iterations needed
to solve the discretization matrix problem to 10~% accuracy tolerance as a func-
tion of the number of subproblem iterations. In this example, all the subproblem
iteration parameters have been set equal to each other (m, = mz = ms). The
horizontal lines show poor scalability of single domain ILU-FGMRES on meshes
containing 2500, 10000, and 40000 solution unknowns. The remaining curves
show the behavior of the Schur complement preconditioned FGMRES on 4, 16,
and 64 subdomain meshes. Satisfactory scalability for very small values (5 or 6)
of the subproblem iteration parameter m; is clearly observed.

Wireframe Approximation A major cost in the explicit construction of the
Schur complement is the matrix-matrix product

ApipApz, - | (25)

Since the subdomain inverse is computed iteratively using ILU-GMRES itera-
tion, forming (25) is equivalent to solving a multiple right-hand sides system with

199

FEUP - Faculdade de Engenharia da Universidade do Porto

130 120
— 40K dofs : : i
L] e 2.5k dofs (1 sub in)
- —— 2.5k dofs (1 subdomain) g ' ==~ 10k dofs (1 subdomain)
LI B v
- s (1 subdomai 5 —— s
§' 1007""] ~e= 2.5k dofs (4 subdomains) §- 80 -~ 10k dofs (16 subdomains)
o « 4~ 10k dofs (16 subdomains) o —p- 40k dofs (64 subdomains)
@ —o~ 40k dofs (64 subdomains) a
S lokwr 10Kdofs 3 60
g © iy g 40K dofs
= Y = 4074 f?
3 k% 25K dofs§ g 10K dofs
S Rt £ ol i
6 0y \.\' 5] 20 Iy
2.5K dofe_T4 - T2 s S i R I ey SR S
0 0 ;
v
0 2 4 6 8 10 o 2 4 6 8 10
Subproblem Iterations Subproblem Iterations
(m=mzmy) (mz=mz=m,)

(a) Diffusion dominated problem. u.: + (b) Advection dominated problem. u, +
Uuyy = 0. uy = 0.

Fig. 11. Effect of the subproblem iteration parameters m; on the global FGMRES
convergence, m; = ma = mg for meshes containing 2500, 10000, and 40000 solution
unknowns.

each right-hand side vector corresponding to a column of Ay, z,. The number of
columns of Ay, 7, is precisely the number of solution unknowns located on the
interface surrounding a subdomain. This computational cost can be quite large.
Numerical experiments with Krylov projection methods designed for multiple
right-hand side systems [25] showed only marginal improvement owing to the
fact that the columns are essentially independent. In the following paragraphs,
“wireframe” and “supersparse” approximations are introduced to reduce the cost
in forming the Schur complement matrix.

The wireframe approximation idea [9] is motivated from standard elliptic
domain-decomposition theory by the rapid decay of elements in S with graph
distance from the diagonal. Consider constructing a relatively thin wireframe
region surrounding the interface as shown in Fig. 12(a). In forming the Eqn.
(25) expression, subdomain solves are performed using the much smaller wire-
frame subdomains. In matrix terms, a principal submatrix of A, corresponding to
the variables within the wireframe, is used to compute the (approximate) Schur
complement of the interface variables. It is known from domain-decomposition
theory that the exact Schur complement of the wireframe region is spectrally
equivalent to the Schur complement of the whole domain. This wireframe ap-
proximation leads to a substantial savings in the computation of the Schur com-
plement matrix. Note that the full subdomain matrices are used everywhere else
in the Schur complement algorithm. The wireframe technique introduces a new
adjustable parameter into the preconditioner which represents the width of the
wireframe. For simplicity, this width is specified in terms of graph distance on the
mesh triangulation. Figure 12(b) demonstrates the performance of this approx-
imation by graphing the total number of preconditioned FGMRES iterations

200

VECPAR’98 - 3rd International Meeting on Vector and Parallel Processing

—»— Diffusion Problem
-e- Advection Problem

/

—
~

Global Iterations Required
S

Wireframe

2 3 4 5
Wireframe Support Distance
(a) Wireframe region surrounding in- (b) Effect of wireframe support on pre-
terface. conditioner performance for diffusion
Uzz+uyy = 0 and advection uz+uy =0
problems.

Fig. 12. Wireframe region surrounding interface and preconditioner performance re-
sults for a fixed mesh size (1600 vertices) and 16 subdomain partitioning. :

required to solve the global matrix problem to a 10~% accuracy tolerance while
varying the width of the wireframe. As expected, the quality of the precondi-
tioner improves rapidly with increasing wireframe width with full subdomain-like
results obtained using modest wireframe widths. As a consequence of the wire-
frame construction, the time taken form the Schur complement has dropped by
approximately 50%.

Supersparse Matrix-Vector Operations It is possible to introduce fur-
ther approximations which improve upon the overall efficiency in forming the
Schur complement matrix. One simple idea is to exploit the extreme sparsity in
columns of Ay 7, or equivalently the sparsity in the right-hand sides produced
from Aplp,Ap 7 needed in the formation of the Schur complement. Observe
that m steps of GMRES generates a small sequence of Krylov subspace vectors
[p,A p, A% p,...,A™ p] where p is a right-hand side vector. Consequently for
small m, if both A and p are sparse then the sequence of matrix-vector products
will be relatively sparse. Standard sparse matrix-vector product subroutines uti-
lize the matrix in sparse storage format and the vector in dense storage format.
In the present application, the vectors contain only a few non-zero entries so that
standard sparse matrix-vector products waste many arithmetic operations. For
this reason, a “supersparse” software library have been developed to take advan-
tage of the sparsity in matrices as well as in vectors by storing both in compressed
form. Unfortunately, when GMRES is preconditioned using ILU factorization,
the Krylov sequence becomes [p, AP~* p,(AP~")? p,...,(AP~!)™ p]. Since the
inverse of the ILU approximate factors L and U can be dense, the first application
of ILU preconditioning produces a dense Krylov vector result. All subsequent

201

FEUP - Faculdade de Engenharia da Universidade do Porto

Krylov vectors can become dense as well. To prevent this densification of vectors
using ILU preconditioning, a fill-level-like strategy has been incorporated into
the ILU backsolve step. Consider the ILU preconditioning problem, LU r = b.
This system is conventionally solved by a lower triangular backsolve, w = L~1b,
followed by a upper triangular backsolve r = U~'w. In our supersparse strategy,
sparsity is controlled by imposing a non-zero fill pattern for the vectors w and
r during lower and upper backsolves. The backsolve fill patterns are most easily
specified in terms fill-level distance, i.e. graph distance from existing nonzeros of
the right-hand side vector in which new fill in the resultant vector is allowed to
occur. This idea is motivated from the element decay phenomena observed for
elliptic problems. Table 1 shows the performance benefits of using supersparse
computations together with backsolve fill-level specification for a 2-D test prob-
lem consisting of Euler flow past a multi-element airfoil geometry partitioned
into 4 subdomains with 1600 mesh vertices in each subdomain. Computations

Table 1. Performance of the Schur complement preconditioner with supersparse arith-
metic for a-2-D test problem consisting of Euler flow past a multi-element airfoil ge-
ometry partitioned into 4 subdomains with 1600 mesh vertices in each subdomain.

Backsolve Global
Fill-Level Distance k{GMRES Iterations|Time(k)/Time(oco)
0 26 0.325
1 22 0.313
2 21 0.337
3 20 0.362
4 20 0.392
00 20 1.000

were performed on the IBM SP2 parallel computer using MPI message pass-
ing protocol. Various values of backsolve fill-level distance were chosen while
monitoring the number of global GMRES iterations needed to solve the matrix
problem and the time taken to form the Schur complement preconditioner. Re-
sults for this problem indicate preconditioning performance comparable to exact
ILU backsolves using backsolve fill-level distances of only 2 or 3 with a 60-70%
reduction in cost.

6 Numerical Results on the IBM SP2

In the remaining paragraphs, we assess the performance of the Schur comple-
ment preconditioned FGMRES in solving linear matrix problems associated an
approximate Newton method for the nonlinear discretized compressible Eu-
ler equations. All calculations were performed on an IBM SP2 parallel com-
puter using MPI message passing protocol. A scalability experiment was per-

202

VECPAR’98 - 3rd International Meeting on Vector and Parallel Processing

formed on meshes containing 4/1, 16/2, and 64/4 subdomains/subinterfaces
with each subdomain containing 5000 mesh elements. Figures 13(a) and 13(b)

' (a) Mach contours (4 subdomains, 20K (b) Mach contours (16 subdomains,
elements). 80K elements).

Fig. 13. Mach number contours and mesh partition boundaries for NACA0012 airfoil
geometry.

show mesh partitionings and sample Mach number solution contours for subsonic
(Mo = .20,a = 2.0°) flow over the airfoil geometry. The flow field was com-
puted using the stabilized GLS discretization and approximate Newton method
described in Sect. 3. Figure 14 graphs the convergence of the approximate New-
ton method for the 16 subdomain test problem. Each approximate Newton iter-
ate shown in Fig. 14 requires the solution of a linear matrix system which has
been solved using the Schur complement preconditioned FGMRES algorithm.
Figure 15 graphs the convergence of the FGMRES algorithm for each matrix
from the 4 and 16 subdomain test problems. These calculations were performed
using ILU[2] and m; = mg = m3 = 5 iterations on subproblems with super-
sparse distance equal to 5. The 4 subdomain mesh with 20000 total elements
produces matrices that are easily solved in 9-17 global FGMRES iterations. Cal-
culations corresponding to the largest CFL numbers are close approximations to
exact Newton iterates. As is typically observed by these methods, the final few
Newton iterates are solved more easily than matrices produced during earlier
iterates. The most difficult matrix problem required 17 FGMRES iterations and
the final Newton iterate required only 12 FGMRES iterations. The 16 subdo-
main mesh containing 80000 total elements produces matrices that are solved
in 12-32 global FGMRES. Due to the nonlinearity in the spatial discretization,
several approximate Newton iterates were relatively difficult to solve, requiring
over 30 FGMRES iterations. As nonlinear convergence is obtained the matrix
problems become less demanding. In this case, the final Newton iterate matrix

203

FEUP - Faculdade de Engenharia da Universidade do Porto

10, e,

Norm(Residual)
3
it

10, o R R U W
. 9

10 5 10 15

Approximate Newton Iteration

Fig. 14. Nonlinear convergence behavior of the approximate Newton method for sub-
sonic airfoil flow. '

o, .
o Tie], CFL=500 10
o lt=2, CFL= R,
Lo Itw3, CFL=300 e, :
—o Itwk, CFL=500 ¢ o Ita], CFL=500
I heas, CFL=523 . T2
ThRE TER R B e LD
L Ii=8. CR=3533 - B W Zo s, CFL=313
~o [t=9, CFL=4 E+6 ° N \ —w— [, CFL=T78
o itat, CFL=T E+§ - TN T3 Ite7. CFL=3036
—o— lt=l1, CFL=1.E+7 s > . “ x \. -;. :§ gnFlﬁgz‘o
E 10 LS SUREREi=n
S A X & - It=12, CFLa9 E+§
2 A R U I = oG s+
101 | ¢ “ﬂ"
Lait Newtos Step A ‘l . Last Newton Ste,
P~ First Nwton Step
Fisst Newton Step
A, -,
09 10 20 30 40 50 60 09 10 20 30 4 50 60
Global FGMRES Matrix-Vector Products Global FGMRES Matrix-Vector Products
(a) 4 subdomains (20K elements). (b) 16 subdomains (80K elements).

Fig. 15. FGMRES convergence history for each Newton step.

required 22 FGMRES iterations. This iteration degradation from the 4 subdo-
main case can be reduced by increasing the subproblem iteration parameters m,,
ms, m3z but the overall computation time is increased. In the remaining timing
graphs, we have sampled timings from 15 FGMRES iterations taken from the
final Newton iterate on each mesh. For example, Fig. 16(a) gives a raw timing
breakdown for several of the major calculations in the overall solver: calcula-
tion of the Schur complement matrix, preconditioning FGMRES with the Schur
complement algorithm, matrix element computation and assembly, and FGM-
RES solve. Results are plotted on each of the meshes containing 4, 16, and 64
subdomains with 5000 elements per subdomain. Since the number of elements
in each subdomain is held constant, the time taken to assemble the matrix is

204

VECPAR'98 - 3rd International Meeting on Vector and Parallel Processing

80 400
60 s @A 300
o —" ':8_: //
é —a— Calculate Schur g / —e— Minimem Size
40 -e- P FGMRES & 200 ~e— Maxi Size
jou] —a— Assetnble Matrix =
& —— FGMRES g /
g
20 RS Z 100 s
IO Lo i (I’) ,‘/—-ﬂ——_
o
0 0 ;
0 8 16 24 32 40 48 56 64 0 8 16 24 32 40 48 56 64
Number of Subdomains Number of Subdomains
(a) Raw timing breakdown. (b) Interface Imbalance and growth.

Fig. 16. Raw IBM SP2 timing breakdown and the effect of increased number of sub-
domains on smallest and largest interface sizes.

also constant. Observe that in our implementation the time to form and apply
the Schur complement preconditioner currently dominates the calculation. Al-
though the growth observed in these timings with increasing numbers of subdo-
mains comes from several sources, the dominate effect comes from a very simple
source: the mazimum interface size growth associated with subdomains. This has
a devastating impact on the parallel performance since at the Schur complement
synchronization point all processors must wait for subdomains working on the
largest interfaces to finish. Figure 16(b) plots this growth in maximum interface
size as a function of number of subdomains in our scalability experiment. Al-
though the number of elements in each subdomain has been held constant in
this experiment, the largest interface associated with any subdomain has more
than doubled. This essentially translates into a doubling in time to form the
Schur complement matrix. This doubling in time is clearly observed in the raw
timing breakdown in Fig. 16(a). At this point in time, we known of no parti-
tioning method that actively addresses controlling the maximum interface size
associated with subdomains. We suspect that other non-overlapping methods
are sensitive to this effect as well.

7 Concluding Remarks

Experience with our non-overlapping domain-decomposition method with an al-
gebraically generated coarse problem shows that we can successfully trade off
some of the robustness of the exact Schur complement method for increased
efficiency by making appropriately designed approximations. In particular, the
localized wireframe approximation and the supersparse matrix-vector operations
together result in reduced cost without significantly degrading the overall con-
vergence rate.

FEUP - Faculdade de Engenharia da Universidade do Porto

It remains an outstanding problem to partition domains such that the max-
imum interface size does grow with increased number of subdomains and mesh
size. In addition, it may be cost effective to combine this technique with multigrid
or multiple-grid techniques to improve the robustness of Newton’s method.

References

1. T. J. Barth, Parallel CFD algorithms on unstructured meshes, Tech. Report
AGARD Report R-907, Advisory Group for Aerospace Research and Development,
1995.

2. T. J. Barth, T. F. Chan, and W.-P. Tang, A parallel non-overlapping domain-

" decomposition algorithm for compressible fluid flow problems on triangulated do-
mains, AMS Cont. Math. 218 (1998).

3. P. Bjorstad and O. B. Widlund, Solving elliptic problems on regions partitioned
into substructures, SIAM J. Numer. Anal. 23 (1986), no. 6, 1093-1120.

4. J. H. Bramble, J. E. Pasciak, and A. H. Schatz, The construction of preconditioners
for elliptic problems by substructuring, I, Math. Comp. 47 (1986), no. 6, 103-134.

5. J. H. Bramble, J. E. Pasciak, and J. Xu, The analysis of multigrid algorithms for
nonsymmetric and indefinite elliptic problems, Math. Comp. 51 (1988), 289-414.

6. A. Brandt and 1. Yavneh, Accelerated multigrid convergence for high-Reynolds re-
circulating flow, SIAM J. Sci. Comput. 14 (1993), 607-626.

7. X.-C. Cai, Some domain decomposition algorithms for nonself-adjoint elliptic and
parabolic partial differential equations, Ph.D. thesis, Ph.D. Thesis, Courant Insti-
tute, 1989.

8. T. Chan and J. Zou, Additive Schwarz domain decomposition methods for elliptic
problems on unstructured meshes, Tech. Report CAM 93-40, UCLA Department
of Mathematics, December 1993.

9. T. F. Chan and T. Mathew, Domain decomposition algorithms, Acta Numerica
(1994), 61-143.

10. D. F. D’Azevedo, P. A. Forsyth, and W.-P. Tang, Toward a cost effective ilu pre-
conditioner with high level fill, BIT 32 (1992), 442-463.

11. M. Dryja, B. F. Smith, and O. B. Widlund, Schwarz analysis of sterative substruc-
turing algorithms for elliptic problems in three dimensions, SIAM J. Numer. Anal.
31 (1994), 1662-1694.

12. M. Dryja and O.B. Widlund, Some domain decomposition algorithms for elliptic
problems, Iterative Methods for Large Linear Systems (L. Hayes and D. Kincaid,
eds.), 1989, pp. 273-291.

13. M. Dryja and O.B. Widlund, Additive Schwarz methods for elliptic finite element
problems in three dimensions, Fifth Conference on Domain Decomposition Methods
for Partial Differential Equations (T. F. Chan, D.E. Keyes, G.A. Meurant, J.S.
Scroggs, and R.G. Voit, eds.), 1992.

14. T. Dupont, R. Kendall, and H. Rachford, An approzimate factorization procedure
for solving self-adjoint elliptic difference equations, SIAM J. Numer. Anal. 5 (1968),
558-573.

15. D.J. Evans, The use of pre-conditioning in iterative methods for solving linear equa-
tions with symmetric positive definite matrices, J. Inst. Maths. Applics. 4 (1968),
295-314.

16. G. Golub and D. Mayers, The use of preconditioning over irregular regions, Com-
put. Meth. Appl. Mech. Eng. 6 (1984), 223-234.

17

18.

" 19.

20.

21.

22.
23.
24.
25.

26.

27.
28.

29.

VECPAR'98 - 3rd International Meeting on Vector and Parallel Processing

. T. J. R. Hughes, L. P. Franca, and M. Mallet, A new finite element formulation
for CFD: 1. symmetric forms of the compressible Euler and Navier-Stokes equa-
tions and the second law of thermodynamics, Comput. Meth. Appl. Mech. Eng. 54
(1986), 223-234.

T. J. R. Hughes and M. Mallet, A new finite element formulation for CFD: III. the
generalized streamline operator for multidimensional advective-diffusive systems,
Comput. Meth. Appl. Mech. Eng. 58 (1986), 305-328.

G. Karypis and V. Kumar, Multilevel k-way partitioning scheme for irregular
graphs, Tech. Report Report 95-064, U. of Minn. Computer Science Department,
1995.

D. J. Mavriplis, A three dimensional multigrid Reynolds-averaged Navier-Stokes
solver for unstructured meshes, Tech. Report ICASE Report 94-29, NASA Langley,
1994.

J. A. Meijerink and H. A. van der Vorst, An iterative solution method for linear
systems of which the coefficient matriz is @ symmetric M-matriz, Math. Comp. 34
(1977), 148-162.

J. S. Przemieniecki, Matriz structural analysis of substructures, Am. Inst. Aero.
Astro. J. 1 (1963), 138-147.

Y. Saad, A flezible inner-outer preconditioned GMRES algorithm, SIAM J. Sci.
Stat. Comp. 14 (1993), no. 2, 461-469.

H. A. Schwarz, Uber einige abbildungensaufgaben, J. Reine Angew. Math. 70
(1869), 105-120.

V. Simoncini and E. Gallopoulos, An iterative method for nonsymmetric systems
with multiple right-hand sides, SIAM J. Sci. Comput. 16 (1995), no. 4, 917-933.
B. Smith, P. Bjorstad, and W. Gropp, Domain decomposition: parallel multi-
level methods for elliptic partial differential equations, Cambridge University Press,
1996.

H. Stone, Iterative solution of implicit approzimations of multidimensional partial
differential equations, SIAM J. Numer. Anal. 5 (1968), 530-558.

Y. Wu, X.-C. Cai, and D. E. Keyes, Additive Schwarz methods for hyperbolic equa-
tions, AMS Cont. Math. 218 (1998).

J. Xu, An introduction to multilevel methods, Lecture notes: VIIth EPSRC numer-
ical analysis summer school, 1997.

207

FEUP - Faculdade de Engenharia da Universidade do Porto

208

VECPAR'98 - 3rd International Meeting on Vector and Parallel Processing

Parallel Turbulence Simulation: Resolving the
Inertial Subrange of Kolmogorov’s Spectra

Martin Strietzel*, Thomas Gerz

Center for Simulation Software and
Institut fiir Physik der Atmosphére
of the German Aerospace Center (DLR)
D-51170 Koln
{martin.strietzel,thomas.gerz}@dlr.de

Abstract. We describe our parallel implementation for large-eddy sim-
ulation and direct numerical simulation of turbulent fluids (called PAR-
DisTUF) based on the three-dimensional incompressible Navier - Stokes
equation. Benchmark results on a set of european supercomputers under
the message-passing platform MPI are presented. Using this programm
on a 48 node SP-2 we resolved the inertial subrange of Kolmogorv’s
turbulence spectra for the first time for a stratified and sheared environ-
mental flow.

1 Introduction

The Institute of Atmospheric Physics at the German Aerospace Research Facil-
ity (DLR) in Oberpfaffenhofen is investigating the physics of turbulent fluids.
The studies are motivated by the need to understand and predict the diffusion
of species concentrations in atmospheric flows which often are turbulent, stably
stratified and sheared. One special point of interest is the concern that exhaust
gases from aircraft may influence the global climate. The aim of the paralleliza-
tion activities is to tackle the particular problem of the diffusion properties at
small scales. ,

During the last ten years an extensive program for Dlrect numerical (or large-
eddy) Simulation of TUrbulent Fluid (DISTUF) at high Reynolds numbers under
the influence of shear and stable stratification was developed and optimized for
daily use on vector computers such as the Cray Y-MP (cf. (3]). For a simulation
run on 1283 gridpoints with 3000 time steps DISTUF requires about 44 MWords
(64bit) of memory and eight hours of CPU time on one processor.

To resolve the inertial subrange of the turbulent energy spectrum .the resolu-
tion has to be increased to 5122 gridpoints. This is not feasible on nowadays
vector computers. At this point we decided to make our code suitable for state-
of-the-art massively parallel systems to access more computing power and more
memory. The parallelization is based on the concepts of message-passing and
domain decomposition. We use MPI to achieve a high portability.

* Supported by Zentrum fiir Paralleles Rechnen (University of Cologne)

209

FEUP - Faculdade de Engenharia da Universidade do Porto

The successfull parallelization is demonstrated by a simulation run on a 48 pro-
cessor SP-2 at the DLR. In this run the inertial subrange of Kolmogorov’s spectra
is resolved for the first time by a computer simulation.

2 Method of simulation

We integrate the time-dependent, incompressible, three-dimensional Navier -
Stokes and temperature concentration equations in a rectangular domain and in
time. The methods of large-eddy simulation (LES) or direct numerical simula-
tion (DNS) are selectable.

We consider a rectangular domain with coordinates z, y, z or z; (i € {1,2,3}),

Lys24
— L e
w(z) Ty(2)
0tz -
- La/2
20 i
‘L2
— A o "L2f2
L2 0 Ly/2

Fig. 1. (a) Simulation domain and (b) mean profiles of velocity and temperature

and side-length L;. The mean horizontal velocity Up(z) and mean (reference)
temperature Tp(z) possess uniform and constant gradients relative to the ver-
tical coordinate z and are constant in the other directions. The fluid is as-
sumed to have constant molecular diffusivities for momentum and heat. All
fields are expressed nondimensionally using L := L3, AU = ||dUp/dx3||L and
AT = ||dTy/dz3||L as reference scales for length, velocity and temperature. The
turbulent fluctuations relative to these mean values are u; (i € {1,2,3}) for ve-
locity, T for temperature and p for pressure.

The normalized Navier-Stokes-equation, the heat balance, and the continuity
equation read

) 6ui 0 6u,~ I aTij Bp ,52 -
B + 3z, (ujus) + S.’I:35-z-1— + Suzdy = —éx—j - E‘: + Rz?TO,;g (1)
T o oT _ Ot
5}‘—-1- an(IL]T)+S$35;+5U3 = ——g;;— (2)
Ou; _
B = 0, (3)

210

VECPAR'98 - 3rd International Meeting on Vector and Parallel Processing

where S = (L/AU)(dUo/dzs) € {0,1} is the nondimensional shear parameter,
s = (L/AT)(dTo/dzs) € {~1,0,1} is the stratification parameter, and &;; is the
Kronecker-Delta. Ri is the gradient Richardson number. 7;; and 7r; denote the
diffusive fluxes of momentum and heat. Additionaly the distribution of three
passive scalars can be calcultated by solving transport equations for each one.
The equations are discretized in an equidistant Eulerian framework using a
second-order finite-difference technique on a staggered grid for all the terms
in the equations except the mean advection, where pseudo-spectral (Fourier)
approximation in z-direction is used. The Adams-Bashforth scheme is employed
for time integration of the acceleration terms. The pressure p"*! at the new
time-level 7 + 1 is obtained by solving the Poisson equation in finite difference
form (4), with §; as the common finite difference operator and u; denoting the
velocity terms resulting from the Adams-Bashforth scheme.

1.
61'5,‘ pn+1 = Z-Etsiui. (4)
The solution of (4) is obtained using a fast Poisson solver, which includes the
shear-periodic boundary condition at time t"+1 and applies a combination of fast
Fourier transforms and Gaussian elimination. Finally the velocities are updated
by the new pressure terms.

3 Paraliel approach

Our main aim was to develop a parallel code which is not only efficient, scalable,
and numerically correct, but also portable on a wide range of supercomputers.
For this reason we decided to take advantage of the MPI message passing stan-
dard. The first experiences with the MPI implementations show that this was
the right decision. We were able to port the programm to a wide set of computers
very fast and without any changes concerning the message passing calls.

3.1 Domain decomposition

Analysing the sequential code we found out that under the aspect of parallelism
the one-, two- and three-dimensional fast Fourier transforms (FFT) are the most
critical parts of the program. The one-dimensional FFT in x-direction is used in
every time step in order to consider the shear flow in the horizontal velocity com-
ponents. The two-dimensional FF'T in x- and y-direction is a part of the Poisson
solver for equation (4). For statistic evaluations in the Fourier space, which can
be done at user defined intervals, we need a parallel three-dimensional Fourier
transform, too. ’

The best way of implementing two- and three-dimensional FFT on parallel com-
puters is to treat them as a sequence of one-dimensional transforms, which are
computed independently on the processors. (cf. [1},{8],[2]). This is no problem at

211

FEUP - Faculdade de Engenharia da Universidade do Porto

all on shared memory computers and can be implemented on distributed mem-
ory machines by using efficent algorithms for data transposition. For this reason
we partition the three-dimensional grid into subdomains allowing to perform a
one-dimensional Fourier transform in x-direction without communication. That
means that the domain is decomposed in horizontal bars in x-direction (two-
dimensional decomposition) or in horizontal (or vertical) planes in x/y (or x/z)
direction, what we call one-dimensional decomposition. According to this, the
process topology is a one-dimensional or a two-dimensional grid (fig. 2). With
the described domain partitioning we can perform all necessary Fourier trans-
forms in y and z direction after data transposition, which can be implemented
very efficiently using MPI calls (cf. [6]).

In the Poisson solver we have to solve tridiagonal systems of equations dis-

a)

Nk

R EE

RRLAREEN)
NiZ+1

Fig. 2. Datadecomposition: One-dimensional (a, b) and two-dimensional (c). The ar-
rows show the distribution of the tridiagonal systems (5)

tributed in z-direction. This is another point where we have to think about an
efficient parallel algorithm. Our approach for this is described in chapter 3.2. All
other parts of the algorithm can be calculated independently on all processors. if
we ensure an overlap of one row or column of gridpoints in each direction. which
has to be updated after each time step.

3.2 Parallel Poisson solver
For pressure correction we have to solve the Poisson equation

duilz) _ ,, &

= At
for the pressure p in each time step. This is done by two-dimensional Fourier
transforms of the left handsides in both horizontal directions, which results in
(N1/2+ 1) * Ny (Ng,sx = number of gridpoints in z, y. and z direction) tridi-
agonal systems of equations of rank Ny with shear-periodic boundaries (w is a

212

VECPAR’98 - 3rd International Meeting on Vector and Parallel Processing

Max. |Memory®|Performance per proc.
System Processor |number| p. proc. peak SPEC |cache
(manufacturer) |(manufacturer) of proc.| (MB) |(MFlop/s) 928 |[(KB)
Massivly-parallel systems with distributed memory:
GC/PowerPlus 601+ 192 32 80 125 32
(Parsytec) (PowerPC) (96) (64)
SpP2 Power2 58 256 267 244.6 2566
(IBM) (IBM) (+8) (128) (133) (202.1) |(128)
T3D alpha 21064 512 64 150 200 8
(Cray) (DEC)
Systems with shared memory:
Power
Challenge XL R8000 16 500 300 311 4.000
(SGI/SNI) (MIPS)
Ultra unknown
Enterprise 4000 Ultra I 8 128 to the 386 512
(SUN) . (SPARC) author
Parallel vector machines:
J916 16 256 200
(Cray)

Table 1. Technical data of the parallel systems

complex shear factor):

Pioi = 2Pi+Pipr =4, i=12,...,Ng pi,u€eC (5)

Do = WPNy PNg+1 = WP

The components p;, ©; of each of these systems are distributed in z-direction on
the grid. The systems themselves are distributed in x- and y-direction (fig. 2).
After solving the equations the results are transformed back, and we finally get
the pressure terms p for the next time step.
For parallelization we must distinguish between the phase of Fourier transforms
and the algorithm for solving the tridiagonal systems. The Fourier transforms
can be done simultaneously on the distributed datasets. In case of the two-
dimensional decomposition we have to include a data transposition step.
The distributed equations can be solved independently by the subsets of pro-
cesses with the same x and y coordinates. Each of the in z-direction distributed
svstems (5) is solved by an improved divide & conquer method (cf. [7]) based
on an algorithm from Mehrmann (cf.[5]).

4 Experiences on parallel systems

We had the opportunity to run the parallel turbulence simulation code on a set
of parallel computers, including shared memory and distributed memory sys-

213

FEUP - Faculdade de Engenharia da Universidade do Porto

tems. The machines are summarized in table 1.

The parallel test runs are compared with a run on one processor of the CRAY
J916 with 256 MB of memory and a peak performance of 200 MFlops. This is
the machine the original code is designed and highly optimized for.

In order to evaluate performance data on all machines we run simulations with

Fig. 3. Runtimes for one timestep on 128° gridpoints.

CRAY T3D --x-s-
PARSYTEC GC/PowerPlus ---#---]
IBM SP2 g

SGlI Power Challenge —+—
UN Enterprise ---w--
CRAY J9'G (1 processor) ==~

15.27

CPU-time per timestep (seconds)

18
Number of processors (P)

shear, stratification, and three passive scalars about 64 time steps on 128% grid-
points. Here we discuss the timings for one timestep in this run.

On the shared memory systems we get a speed-up of 7.44 on eight SGI processors
and one of 6.56 on eight SUN CPUs. On more than 8 processors of the Power
Challenge this value couldn’t be increased. This restriction depends on the fixed
bandwidth of the underlying communication system, the SGI data bus.

A totaly different picture is the speed-up on the distributed systems. The tim-
ing results are presented in figure 3. Only on the SP2 the 128° grid fits on one
processor and here we get a speed-up of 62.95 for 64 processors.

The best timing results for one timestep has the SP2, which with 16 processors
is 3.5 times faster than the Parsytec GC or the Cray T3D. The T3D with 128
CPUs is still 2 times slower than 64 SP2 processors, but 2 times faster than the
Parsvtec GC.

On the IBM SP2 and the SUN Enterprise we need at least three processors to
get the same performance than one CRAY J90 vector processor. On the SGI
Power Challenge two CPUs already are faster than the J90.

214

VECPAR’98 - 3rd International Meeting on Vector and Parallel Processing

The results show that our parallel code has a good efficiency on medium sized
shared memory and larger distributed memory machines. But not only the per-
formance is important. Running the programm on 48 fat nodes of the SP2 allows
as to use 12 Gbyte memory. Therfore we are able to compute grids with 480°
gridpoints, this is more than 8 times larger than on vector machines.

5 Resolving the Inertial Subrange

In the Kolmogorov spectra of turbulence energy [4], the kinetic energy in the
flow is plotted over all wavenumbers, which are reciprocal to the size of the eddy-
structurs. This spectra can be divided into three subranges: production, inertia,
and dissipation. In the inertial subrange the flow has universial properties, which
do not depend on the geometrie or other physical parameters of the flow. The
existence of the inertial subrange depends on the Reynolds number of the flow.
In direct numerical simulation this is directly correlated to the grid resolution.
On the SP2 we were able to manage one run on 4803 gridpoints with a Reynolds

0.001 T ——T— T T T T T T
Time 0

0.0001
b

1e-05

Kinetic energy

1e-06

1e-07

L 1 L) !

1e-08 ‘ . L -
2 4 8 16 32 64 128 240

Wavenumber k

Fig. 4. Spectra of the kinetic energy of the simulation with 480° gridpoints, Revnolds
number 600 (based on velocity fluctuation and integral scale)

number of 600. By using a gradient Richardson number of 0.13 we force the flow
to become stationary, that means the kinetic energy becomes constant. After an
initial phase this flow shows a self similar energy spectra with a decay as k="/%

215

FEUP - Faculdade de Engenharia da Universidade do Porto

for 20 < k < 50. This is the main indication for a resolved inertial subrange.
For our knowledge, this is the first time that the Kolmogorv’s inertial subrange
could be resolved in a computer simulation.

6 Conclusion

A fully parallelized version of an incompressible turbulence simulation code has
been presented. The parallel code achieves 2.446 GFlop/s on 64 SP2 processors,
this is 26.3 times faster than on one J90 vector processor. Due to the message
passing standard MPI we achieved a perfect portability. The developed code is
now fitted for the use on state-of-the-art parallel computers.

We have demonstrated that the concept on message passing is not exclusive for
distributed memory machines and we have shown that a MPI implementation
on a few processors, which derives advantage from the fast communication possi-
bilities on shared memory machines, can be better suited for parallel computing
than on some other dedicated message passing machines.

On the other hand we developed a parallel code which already leads to new
physical results. First in the world, we resolved the inertial subrange of a homo-
geneously turbulent and stratified shear flow by a direct numerical simulation.
This demonstrates the way how parallel computing can open the door for new
fundamental results in physics.

References

1. Martin Biicker. Zweidimensionale Schnelle Fourier-Transformation auf massiv par-
allelen Rechnern. Technical Report Jiil-2833, ZAM, Forschungszentrum Jiilich, D-
52425 Jilich, November 1993.

2. Clare Yung-Lei Chu. The fast Fourier transform on hypercube parallel computers.
PhD thesis, Cornell University, 1988.

3. Thomas Gerz, Ulrich Schumann, and S. E. Elghobashi. Direct numerical simulation
of stratified homogeneous turbulent shear flows. J. Fluid Mech., 200:563-594. 1989.

4. A. N. Kolmogorov. The local structure of turbulence in incompressible viscous

fluid for very large Reynolds number. C. R. Acad. Nauk SSSR. 30:301-303, 1941.

Reprinted in Proc. Soc. Lond. A, 434, 9-13(1991).

Volker Mehrmann. Divide and conquer methods for block tridiagonal svstems.

Parallel Comput., 19:257-279, 1992.

6. Message Passing Interface Forum. MPI: A message-passing interface standard, June

1995.

Ulrich Schumann and Martin Strietzel. Parallel solution of tridiagonal svstems for

the Poisson equation. J. Sci. Comput., 10(2):181-190, Juni 1995.

8. Paul N. Swarztrauber. Multiprocessor FFTs. Parallel Comput., 5:197-210. 1987.

o

This article was processed using the IXTEX macro package with LLNCS stvle

216

VECPAR'98 - 3rd International Meeting on Vector and Parallel Processing

A Systolic Algorithm for the Factorisation of Matrices
Arising in the Field of Hydrodynamics

S.-G. Seo', M. J. Downie', G. E. Hearn' and C. Phillips*

'Department of Marine Technology, University of Newcastle upon Tyne,
Newcastle upon Tyne, NE1 7RU, UK

*Department of Computing Science, University of Newcastle upon Tyne,
Newcastle upon Tyne, NE1 7RU, UK

Abstract. Systolic algorithms often present an attractive parallel
programming paradigm. However, the unavailability of specialised hardware
for efficient implementation means that such algorithms are often dismissed
as being of theoretical interest only. In this paper we report on experience
with implementing a systolic algorithm for matrix factorisation and present a
modified version that is expected to lead to acceptable performance on a
distributed memory multicomputer. The origin of the problem that generates
the full complex matrix in the first place is in the field of hydrodynamics.

1. Forming the Linear System of Equations

The efficient, safe and economic design of large floating offshore structures and
vessels requires a knowledge of how they respond in an often hostile wave
environment [1]. Prediction of the hydrodynamic forces experienced by them and
their resulting responses, which occur with six rigid degrees of freedom, involves
the use of complex mathematical models leading to the implementation of
computationally demanding software. The solution to such problems can be
formulated in terms of a velocity potential involving an integral expression that can
be thought of as representing a distribution of sources over the wetted surface of the
body. In most applications there is no closed solution to the problem and it has to be
solved numerically using a discretisation procedure in which the surface of the body
is represented by a number of panels, or facets. The accuracy of the solution
depends on a number of factors, one of which is the resolution of the discretisation.
The solution converges as resolution becomes finer and complicated geometries can
require very large numbers of facets to attain an acceptable solution.

In the simplest approach a source is associated with each panel and the interaction
of the sources is modelled by a Green function which automatically satisfies relevant
‘wave boundary conditions’. The strength of the sources is determined by satisfying a
velocity continuity condition over the mean wetted surface of the body. This is

217

FEUP - Faculdade de Engenharia da Universidade do Porto

achieved by setting up an influence matrix, A, for the sources based on the Green
functions and solving a linear set of algebraic equations in which the unknowns, x,
are either the source strengths or the velocity potential values and the right-hand
side, b, are related to the appropriate normal velocities at a representative point on
each facet. For a given wave frequency, each facet has a separate source contributin g
to the wave potential representing the incoming and diffracted waves, ¢o and ¢, and
one radiation velocity potential for each degree of freedom of the motion, ¢
i=1,2,...,6. When the velocity potentials have been determined, once the source
strengths are known, the pressure can be computed at every facet and the resultant
forces and moments on the body computed by integrating them over the wetted
surface. The forces can then be introduced into the equations of motion and the
response of the vessel at the given wave frequency calculated.

The complexity of the mathematical form of the Green functions and the
requirement to refine the discretisation of the wetted surfaces within practical
offshore analyses, significantly increases the memory and computational load
associated with the formulation of the required fluid-structure interactions. Similarly
the solution of the very large dense square matrix equations formulated in terms of
complex variables requires considerable effort to provide the complex variable
solution. In some problems 5,000 panels might be required using constant plane
elements or 5,000 nodes using higher order boundary elements, leading to a matrix
with 25,000,000 locations. Since double precision arithmetic is required, and the
numbers are complex, this will require memory of the order of 4 gigabytes. The
number of operations for direct inversion or solution by iteration is large and of the
order of n', e:g. 5,000 elements requires 125,000 x 10° operations. Furthermore, the
sea-state for a particular wave environment has a continuous frequency spectrum
which can be modelled as the sum of a number of regular waves of different
frequencies with random phase angles and amplitudes determined by the nature of
the spectrum. Determination of vessel responses in a realistic sea-state requires the
solution of the boundary integral problem described above over a range of discrete
trequencies sufficiently large to encompass the region in which the wave energy of
the irregular seas is concentrated. In view of the size and complexity of such
problems, and the importance of being able to treat them, it is essential to develop
methods to speed up their formulation and solution times. One possible means of
achieving this is through the use of parallel computers [2] [3].

Since A is a full, square matrix, and in view of the uncertainty regarding the
convergence of iterative methods, the use of a direct method of solution based on
elimination techniques would seem the most attractive proposition. The method of
LU-decomposition has been chosen because in this scheme only one factorisation is
required for multiple unknown right-hand side vectors b. It is well known that this
factorisation is computationally intensive, involving order n arithmetic operations
(multiplications and additions). In contrast the forward- and backward-substitution
required to solve the original system once the factorisation has been performed
involves an order of magnitude less computation, namely order n’, which becomes
insignificant as the matrix size increases. Consequently, we limit consideration to
the factorisation process only.

218

VECPAR'98 - 3rd International Meeting on Vector and Parallel Processing

Formally, we have that the elements u; of U are given by
r1
] 1
U, =arj_zlrkukj J=TFeish 1)
k=1

and [, of L are given by
r-1
lir =(ai1~_zlikuk’]/urr j=r+1,..,n @
k=1

(Doolittle factorisation) leading to an upper-triangular U and a unit lower-triangular
L.

2. A Naive Systolic Algorithm Solution

A systolic system can be envisaged as an array of synchronised processing elements
(PEs), or cells, which process data in parallel by passing them from cell to cell in a
regular rhythmic pattern. Systolic arrays have gained popularity because of their
ability to exploit massive parallelism and pipelining to produce high performance
computing [4] [5). Although systolic algorithms support a high degree of
concurrency, they are often regarded as being appropriate only for those machines
specially built for the particular algorithm in mind. This is because of the inherent
high communication/computation ratio.

In a soft-systolic algorithm, the emphasis is on retaining systolic computation as a
design principle and mapping the algorithm onto an available (non-systolic) parallel
architecture, with inevitable trade-offs in speed and efficiency due to communication
and processor overheads incurred in simulating the systolic array structure.

Initially a systolic matrix factorisation routine was written in Encore Parallel
Fortran (ept) and tested on an Encore Multimax 520. This machine has seven dual
processor cards (a maximum of ten can be accommodated), each of which contains
two independent 10 MHz National Semiconductor 32532 32-bit PEs with LSI
memory management units and floating-point co-processors. This work was
undertaken on a well-established machine platform that was able to provide a
mechanism for validating the model of computation, and the software developed
from that model, with a view to refining the model for subsequent development on a
state-of-the-art distributed memory parallel machine. epf’s parallel program
paradigm is much simpler to work with than that for message passing on distributed
memory architectures and produces a convenient means of providing validation data
for subsequent developments. As long as the underlying algorithm is retained this
implementation can be used to check the correctness of the equations developed and
the validity of the algorithm with a view to an eventual port.

The task of systolic array design may be defined more precisely by investigating
the cell types required, the way they are to be connected, and how data moves
through the array in order to achieve the desired computational effect. The
hexagonal shaped cells employed here are due to Kung and Leiserson {6].

219

FEUP - Faculdade de Engenharia da Universidade do Porto

13

az

ajq

ax

az2

Fig. 1. Data flow for LU factorisation

220

VECPAR’98 - 3rd International Meeting on Vector and Parallel Processing

The manner in which the elements of L and U are computed in the array and
passed on to the cells that require them is demonstrated in Fig. 1. An example of a
4x4 cell array is shown for the purposes of illustrating the paradigm employed. Of
the PEs on the upper-right boundary, the top-most has three roles to perform:

1. Produce the diagonal components of L (which, for a Doolittle-based
factorisation, are all unit).

2. Produce the diagonal components of U using elements of A which have
filtered through the cells along the diagonal (and been modified, as appropriate).

3. Pass the reciprocal of the diagonal components of U down and left.

The cells on the upper left boundary are responsible for computing the multipliers
(the elements of L), having received the appropriate reciprocals of the diagonal
elements of U. ’

The flow of data through the systolic array is shown in Fig. 1. Elements of A flow
in an upward direction; elements of L (computed from (1)) flow in a right-and-down
direction; and elements of U (computed from (2)) flow in a left-and-down direction.
Each cell computes a value every 3 clock ticks, although they start at different times.
Note that at each time step each cell responsible for forming an element of L or U
calculates one multiplication only in forming a partial summation. Data flowing out
correspond to the required elements of the L and U factors of A. Formally, the
elements of A are fed into the cells as indicated, although for efficiency the cells are
directly assigned the appropriate elements of A .

Table 1 shows the execution times (7)) of the parallel code with a fixed-size
(100*100 double complex) matrix and various numbers of PEs (p). The gradual
algorithmic speed-up (S,), defined as the ratio of the time to execute the program on
p processors to the time to execute the same parallel program on a single processor,
is clearly seen all the way up to twelve PEs. The (generally) decreasing efficiency
(E,), defined as the ratio of speed-up to the number of PEs times 100, is a
consequence of the von Neumann bottleneck. The results show some minor
anomalies, but this is not atypical when attempting to obtain accurate timings on a
shared resource, with other processes - system or those of other users - interfering
with program behaviour, even at times of low activity. At this level, the results are
encouraging.

Table 1. Shared memory implementation

P 1 2 3 4 5 6 7 8 9 10 11 12

T, . 489 283 202 149 12.3 106 89 8.0 73 6.6 6.2 6.1
S, i 1.7 24 33 4.0 4.6 55 6.1 6.7 7.4 7.9 8.0
100 87 81 82 80 77 79 77 74 74 72 68

The algorithm was compared with an existing parallel matrix factorisation routine
{7]. which uses more conventional techniques, available in the Department of
Marine Technology (DMT). The results are summarised in Fig 2, where St
denotes the speedup for the systolic algorithm (from Table 1) and S, mr, the speedup

(OMT)

221

FEUP - Faculdade de Engenharia da Universidade do Porto

for the DMT algorithm. The extra cost of the systolic algorithm due to overheads

12 + ,
S

P

Fig. 2. Comparison of speedup for systolic and DMT algorithms.

associated with index calculation and array accesses causes significant delays in the
computation resulting in much poorer performance of the systolic algorithm in
comparison to the DMT routine in terms of elapsed time. Nevertheless, the systolic
algorithm shows better speedup characteristics than the DMT algorithm, as
illustrated by Fig. 2.

If A is an n by n dense matrix then the systolic algorithm implemented on n° PEs
can compute L and U in 4n clock ticks, giving a cell efficiency of 33%. Assuming a
hardware system in which the number of PEs is much less than the number of cells,
and using an appropriate mapping of cells to PEs, we can improve this position
considerably, and we now address this issue.

3. An Improved Systolic Algorithm

As already indicated, the ultimate goal is to produce an efficient systolic matrix
factorisation routine for general-purpose distributed parallel systems including
clusters of workstations. This is to be achieved by increasing the granularity of the
computation within the algorithm and thus reducing the communication/
computation ratio, while balancing the load on each PE to minimise the adverse

222

VECPAR'98 - 3rd International Meeting on Vector and Parallel Processing

effect due to enforced synchronisation. Nevertheless, the characteristics peculiar to
systolic algorithms should be retained. Thus we aim at

® massive, distributed parallelism
e Jocal communication only
e asynchronous mode of operation

Each PE will need to perform far more complex operations than in the original
systolic systems used as the original basis for implementation. There is an inevitable
increase in complexity from the organisation of the data handling required at each
synchronisation (message-passing) point.

7 4 s A 7 A
4 . B .
‘ ‘ .
. ’ ’ ’
. - . : 2
)l "
. 4 B 7
‘. e e s
’ . .
. . 3
- - .
. .
: 3
. , o
4' 4
;
o ’ 0
.
A . . .
. . , . 7
e e ‘ .
. ,
>
. P P l
’ ’ ’
. .
5 - - . 7 p
. ’ ’r ’4 ’1 .
> ”
1 2
. .
.
. ,
3] P .8 . Y

Fig. 3. Allocation of pseudo cells to PEs for a 6x6 matrix.

The systolic algorithm can be regarded as a wave front passing through the cells
in an upwards direction in Fig. 1. This means that all pseudo cells in a horizontal
line, corresponding to a reverse diagonal of A, become active at once. It follows that
we allocate the whole of a reverse diagonal to a PE, and distribute the reverse
diagonals from the top left to the bottom right in a cyclic manner so as to maintain
an even load balance (for a suitably large matrix size). Fig. 2 shows such a
distribution for a 6x6 matrix distributed on 4 PEs.

223

FEUP - Faculdade de Engenharia da Universidade do Porto

&

The computation starts at PEO with pseudocell 1. As time increases, so the
computation domain over the matrix domain increases, and later shrinks. The shape
of the computation domain is initially triangular, to include the first few reverse
diagonals. On passing the main reverse diagonal, the computation domain becomes
pentagonal, and remains so until the bottom right-hand corner is reached, when it
becomes a quadrilateral. Once the computation domain has covered the whole of the
domain of pseudo cells it shrinks back to the top left, whilst retaining its
quadrilateral shape. The whole process is completed in 3n-2 timesteps.

A Fortran implementation of the revised systolic algorithm is currently under
development using the distributed memory Cray T3D at the Edinburgh Parallel
Computer Centre (EPCC), and the Fujitsu AP1000 at Imperial College, London,
and MPI [8] [9] for message passing.

100 T
80 + .
60 +

40 T+

0 t t f f i
0 20 40 60 80 100

Fig. 4. Speedup on distributed memory machine for 400 by 400 array

In this implementation the elements in each reverse (top-right to bottom-left)
diagonal of the matrix are bundled together so that they are dealt with by a single PE
and all of the reverse diagonals which are active at a given time step are again
grouped together to be passed around as a single message. Preliminary experience
with the revised algorithm indicates that it scales well, as shown by the speed up
figures for a 400 by 400 array computed on the Fujitsu machine and illustrated in ’
Fig. 4. .

224

VECPAR’98 - 3rd International Meeting on Vector and Parallel Processing

4. Conclusions

The algorithm described initially was a precursor to a more generalized one
designed with the intention of increasing the granularity of computation and with
the solution of large systems of equations in mind. As expected, it performed poorly
in terms of elapsed time due to the penalties imposed by an unfavourable balance
between processor communication and computation. However, the speedup
characteristics compared favourably with those of a more conventional approach
and pointed to the potential for the generalised algorithm.

Accordingly, a generalised version of the algorithm has been developed and is
currently being tested. The speedup obtained on the distributed memory machine
suggest that the approach taken is valid. It remains to benchmark the algorithm
against a conventional solver, such as the one available within the public domain
software pachage, ScaL APACK.

References

I. Hearn, G.E., Yaakob, O., Hills, W.:. Seakeeping for design: identification of
hydrodynamically optimal hull forms for high speed catamarans. Proc. RINA Int. Symp.
High Speed Vessels for Transport and Defence, Paper 4, London (1995), pp15.

2. Hardy, N., Downie, M.]., Bettess, P., Graham, J.M.: The calculation of wave forces on
offshore structures using parallel computers., Int. J. Num. Meth. Engng. 36 (1993) 1765-
1783

3. Hardy, N., Downie, M.J., Bettess, P.: Calculation of fluid loading on offshore structures
using parallel distributed memory MIMD computers. Proceedings, Parallel CFD, Paris
(1993). ,

4. Quinton, P., Craig, 1.: Systolic Algorithms & Architectures. Prentice Hall International
(1991)

5. Megson, G. M. (ed.): Transformational Approaches to Systolic Design. Chapman and
Hall (1994) '

6. Kung, H. T. and Leiserson, C. E. Systolic Arrays for VLSI, Sparse Matrix Proceedings,
Duff, L.S. and Stewart, G.W. (ed.). Society for Industrial and Applied Mathematics (1979)
PP.256-282.

7. Applegarth, 1, Barbier, C., Bettess, P.. A parallel equation solver for unsymmetric
systems of linear equations. Comput. Sys. Engng. 4 (1993) 99-115

8. MPI: A Message-Passing Interface Standard. Message Passing Interface Forum (May
1994) :

9. Snir. M., Otto. S., Huss-Lederman, S., Walker, D., Dongarra, J.: MPL: The Complete
Reference. MIT Press (1996)

225

FEUP - Faculdade de Engenharia da Universidade do Porto

226

VECPAR'98 - 3rd International Meeting on Vector and Parallel Processing

The study of a parallel algorithm using the
laminar backward-facing step flow as a test case

P.M. Areal! and J.M.L.M. Palma?

(1) Instituto Superior de Engenharia do Porto
Rua de Sao Tomé
4200 Porto, Portugal
(e-mail: pareal@sfc6.fe.up.pt)

(2) Faculdade de Engenharia da Universidade do Porto
Rua dos Bragas
4099 Porto Codex. Portugal
(e-mail: jpalma@fe.up.pt)

Abstract. The current study discusses the results of parallelization of
a computer program based on the SIMPLE algorithm and applied to
the prediction of the laminar backward-facing step flow. The domain of
integration has been split into subdomains, as if the flow were made up
of physically distinct domains of integration.

The convergence characteristics of the parallel algorithm have been studied
as a function of grid size, number of subdomains and flow Reynolds num-
ber. The results showed that the difficulties of convergence increase with
the complexity of the flow. as the Revnolds number increases and extra
recirculation regions appear.

1 Introduction

Parallel computing has become more and more common, and has developed
from a subject of specialized scientific meetings and journals into an affordable
technology. to a point where we feel that no references are needed to support
this statement.

Fluid flow algorithms are complex, given the number of equations involved.
the elliptic nature, non-linearity and peculiarities of the pressure-velocity coup-
ling for incompressible flows. All these features are familiar to those in the fluid
dynamics community and make this a formidable set of equations intractable
by theoretical approaches. The parallelization makes things even worse and our
option was to study parallel fluid algorithm through applications to a series of
flow geometries and conditions.

In the present study we discuss the numerical behaviour of a parallel version
of the SIMPLE algorithm [14]. We show how the convergence was influenced by
the Reynolds number, grid size, number of subdomains and overlapping between
the subdomains. A previous work [3] has been followed and new findings and
conclusions were added as a result of a new set of calculations using different
flow geometry and conditions, i.e. the laminar backward-facing step flow.

227

FEUP - Faculdade de Engenharia da Universidade do Porto

2 Mathematical model and strategy of parallelization

The fluid flow equations, assuming steady-state. incompressible and Newtonian
fluid. were solved on a Cartesian coordinate system.

(?ll,' _
5z = W
5‘11,'11]‘ _ dp _?_ _6_1_1# @L)} 7
P ou; T ow o, {H (817 i .

where w; is the velocity along the direction ;, p is the pressure, and p and j are
the density and fluid dynamic viscosity, respectively.

These equations were discretized in a numerical grid. with all variables being
defined at the same location (the collocated grid [15]) and following the finite
volume approach [6}. The hybrid and central finite differencing schemes were
used for discretization of the convective and diffusive terms, respectively.

T T

ni-nfa |

1 _/

Fig. 1. Overlapping and data exchange between subdomains

The algorithm entitled SIMPLE [14], was used. An approach where. after
rewriting the continuity equation (1) as a function of a pressure correction vari-
able. mass and momentum conservation are alternately enforced. Equations (1)
and (2) are solved as if they were independent (or segregated) systems of equa-
tions. until a prescribed criterion of convergence can be satisfied.

For parallelization of the algorithm. the integration domain was split along
the horizontal direction into a variable number of subdomains. with overlapping
(Figure 1). Within each subdomain, the SIMPLE algorithm was used. followed
by exchange of data (pressure gradient, and both u and @ velocities) between
subdomains. This was one iteration; equivalent to one iteration of the sequential
version of the SIMPLE algorithm. comprising the full domain.

228

VECPAR’98 - 3rd International Meeting on Vector and Parallel Processing

The simplest case. with 2 subdomains only, will be used as an example (Figure
1). The first column of subdomain 2 (the west boundary condition) was taken
as one of the columns interior to subdomain 1. The last column of subdomain
1 (the east boundary condition) was taken as one of the columns interior to
subdomain 2. The leve] of overlapping between the subdomains (nfa) depended
on where inside the subdomains the interior columns were located. The amount
of transferred data did not depend on the overlapping: that was a function of
the number of grid nodes along the vertical only.

Other strategies of parallelization have been suggested involving paralleliza-
tion of the equation solver only, either in case of a segregated approach (e.g.:
[11]) or in cases where all the fluid equations are solved simultaneously as part of
a single system (e.g.: [5]). Either of these two alternatives, when compared with
the present parallelization strategy, improve robustness at a cost of increased
communication times.

The test case was the laminar backward-facing step flow (Figure 2). with
an expansion ratio of 1:2 and a domain size extended over 30 step height, h.
A parabolic velocity profile was specified at the inlet section. At the walls.
velocities were set to zero and the pressure was found by zero gradient along the
perpendicular direction. Zero axial gradient was the boundary condition at the
outlet section for all variables.

The tri-diagonal matrix algorithm (TDMA) was used to solve the system of
algebraic linearized equations, with under-relaxation factors of 0.7 for velocities
and 0.3 for pressure. The number of TDMA iterations was fixed and set at 2
for u and v velocities, and 4 for pressure. There was no previous optimization
of these parameters, which were kept unaltered during the course of the current
study.

The calculations were stopped when the residual was lower than 10~?.

3 Results

Results were obtained for numerical grids ranging from 100x64 up to 250x160.
and Reynolds number between 107 and 10 in steps of 10°. The Revnolds number
was defined by Re=pl’2h/u. where U is the average axial velocity at the inlet
section. The flow regime remains laminar for Reynolds number lower than 1200
{cf. [2].

The calculations were performed on a shared memory computer architecture
with a 1.2 G2B/s system bus bandwidth (SGI Power Challenge. with 4 processors
R&000/75 MHz and a total of 512 M2B of RAM; operating system IRIN 6.1 and
fortran compiler MIPSPro Power Fortran77 6.1). The communication between
processors was performed via version 3.3 of PVM message passing protocol [7].

3.1 The flow pattern

For a prior assessment of the computer program, the streamline pattern (Figure
2) was analyzed. For all Reynolds number being tested, downstream of the step.

229

FEUP - Fuculdade de Engenharia da Universidade do Porto

ym
i

yn

25 Kl

ym

Re=1000

[N

Fig. 2. Streamline pattern as a function of the Revnolds number

there was a main recirculation region. whose length increased with the Revnolds
number (Figure 3). The results follow the trend as observed in experiments (cf.
[2]. [16]) and previous calculations (eg. [10]. [18]. [4]). The deviation from the
experimental curve at Re=500 has been attributed to three-dimensional effects.
not accounted for by our calculations.

For a Reynolds number around 400, attached to the top wall of the channel. a
second recirculation appears (Figure 2), reaching a maximum length of about 10/
at Re=1000 (the highest Reynolds number being used). This is a flow pattern
that has been observed experimentally (cf. [2]. [16]) and is shown here to confirm
the quality of our calculations.

Around 50% of the computing time was spent within the routine for solu-

VECPAR'98 - 3rd International Meeting on Vector and Parallel Processing

0 200 400 600 800 1000
— : —— — e ——

14 C 14
o O Armaly et at.(1983) 1

2k & Ghiaetal.(1983) OO . ke
2F A Kimand Moin (1985) 0 .
o Zang et al. {1994) @]

10k Present work I 310

o<

£ 8f 9
x o 3
3 -: 6
aF 44
b c¢ v]
2 =2
o o P e e 1]
0 200 400 600 800 1008

Re

Fig. 3. Size of the main recirculation region as a function of the Revnolds number

tion of the linear system of equations. The assembling of the coefficients of the
three differential equations of pressure. and u and v velocities required 48%.
The communication time was estimated to be 2% of the total computing time.
This was a consequence of the computer architecture, but also a consequence of
the algorithm. with the communication overhead much reduced compared with
parallel fluid algorithms based on the parallelization of the equation solver.

3.2 The convergence of the parallel algorithm

We were interested in studying the effect of parallelization on the convergence
of the algorithm and Figure 4 shows the number of iterations as a function of
Revnolds number for four grid sizes. In case of the parallel version the results
have been plotted in terms of global iteration and the equivalent grid size of the
sequential version. There are two regions in this Figure.

In region I the number of iterations decreased to a minimum. obtained at
Re=400 for grids 200x128 and 250x160, and Re=500 for grids 100x64 and
150x96. This is related with the recirculation region attached to the top wall
and can be confirmed by joint observation of Figures 4 and 2.

For Revnolds number higher than 400 (or 500 for grids 100x 64 and 150 x96).
in region II. the number of iterations increased with the Reynolds number. The
convergence becomes more difficult as the recirculation in the top wall increases
(see also Figure 2). The convergence is tightly coupled with the flow pattern.

There was a minimum value of the Reynolds number (region 1), depending on
the grid size. for which the residual did not fall below 10™* and the convergence
criterion was not satisfied. For instance, for Re=100 after 9000, 6000 and 3550
iterations. for grids 250 x 160. 200 128 and 150 x 96, the residual became constant
at 3.28x107% 1.97x107* and 1.12x107*, respectively. For coarser grids. the

231

~J

/9

FEUP - Faculdade de Engenharia da Universidade do Porto

S100x64
20000 & 1soxes
I region | region 1! ;
- > 200x128
[Convergence Criteria ! :1 250x160
not satisfied i
15000 - i P
A ; X 1
@ i / 1
c ;
2 L ! P R
£ 10000 |- ! y B
2 e I3
Z [{ b
[> Lo ¢« ¢
5000 (S . .
- N \
N o o s .
5 L] . . Y 8 ° Pe)
| [] ° * ‘
o b [T | . S l
0 250 : 500 750 1000
Re

Fig. 4. Number of iterations as a function of the Revnolds number and grid size (filled
symbols: parallel version (2 subdomains): open symbols: sequential version)

constant residual was lower and could be reached at a lower number of iterations.
However. the flow pattern was as expected and we concluded that the criterion
of convergence was too restrictive. Nevertheless, and for consistency with the
remaining cases the criterion of convergence was not changed and we consi-
dered these as non-converged solutions. To some extent. this is related with the
numerical technique used to solve the linear system of equations. For instance.
calculations performed using the SIP (Strong Implicit Procedure [17]). solver
were able to satisfy the convergence criterion for grid 150x96. Re=100.

The results of the parallel version with 2 subdomains (filled sy mbols) are
also included in Figure 4. In most of the cases. the number of iterations (glohal
iterations) of the parallel was identical to the number of iterations of the se-
quential version. However, there were cases where the parallel version conv erged
faster (e.g. grid 150x96 and Re=600), whereas in the most unfavourable situa-
tion {grid 100x64 and Re=700), the parallel required 38% more iterations than
the sequential version.

The convergence characteristics of grids 100x64 and 200x12% are shown in
Figure 5 as a function of the Reynolds number. In case of grid 100 x 64 (Figure 5a)
for Re lower than 500 the sequential requires more iterations to conv erge than
the parallel version, whereas for Re higher than 500 the situation is reversed. In
general. and for Re higher than 500 the number of iterations increases with the
number of subdomains. In case of Re=1000 the calculation with 3 subdomains
requires 3100 iterations compared with 2800 of the sequential version.

The behaviour for grid 200x 128 (Figure 5b). apart from also an increased
number of iterations with the Reynolds number (as in the case of grid 100x64).

232

VECPAR'98 - 3rd International Meeting on Vector and Parallel Processing

a)
3000 - | i
| —&— Seq. |
i - -O0O- - 2subdom. !
|- —A—-- 3 subdom. |
v 4subdom. |
i
o
c
L
=4
T 2000
2
4
1000
1
1000
b) 9000 - !
L LR
3 \
\
[\
8000 [~ }
[i
.\.
7000 p= ~
- [[N
2 T
| ; ‘
6000 - I —o— seq i
! | - -G- - 2 subdom.
3 ‘ ~--0—-- 3 subdom.
v 4 subdom. |
S —
5000 =
ST I SRS EESETE E)
0 200 400 600 800 1000

Re

Fig.5. Number of iterations as a function of Reynolds number and number of subdo-
mains for two numerical grids. a) 100x64; b) 200x 128,

evidences other details worth referring to. For instance, convergence could not
be achieved for Reynolds number lower than 300, even in case of the sequential
version. There was no optimization of the under-relaxation factors. This exer-
cise was beyond the scope of the present work. It is our experience [12] that the
SIMPLE algorithm requires lower under-relaxation factors for finer grids. The
plateau shown for 500 <Re<800 by grid 200x 128 may be associated with the
occurrence of the recirculation region at the bottom wall around 2/h=17. A fea-
ture to which the coarse grid could not be sensitive because of lack of resolution.
This is a statement that we found difficult to confirm.

Figure 5 shows that the number of subdomains did not alter the general
pattern of the convergence characteristics compared with the sequential version.
This is valid throughout the current study and led us to the conclusion that the

233

FEUP - Faculdade de Engenharia da Universidade do Porto

domain splitting. even when the interface between the subdomains divides the
recirculation region. does not affect the convergence.

a) LSE
148 - -o- - 2 subdom.
| - —&—-- 3subdom.
130 v 4 subdom.
12f
R
£ 1.1
S1IpE
La' o v
g u
= F
08
[N
JERPVAN
[ol B
08f G B4e-E-DAD~T
£ 1 ! 1 !
075 0.1 02 0.3 0.4
N
b) 15F —_——
3 - €~ ~ 2 subdom. |
[! —-={}~-- 3 subdom. J
14k [P 4 subdom. !
L " -
[\
- ‘»
L \
g13f \
I,
2 Y
S \
[\
22 A
JANY
5 B
11]
A
A A
GQ o .
I ueele- PRI RESRTE | L |
0.1 0.2 03 04 05

’5
Fig. 6. Number of iterations as a function of subdomain overlapping and number of
subdomains for grid 100x64 and two Reynolds number. a) Re=100: b) Re=1000.

3.3 Domain overlapping

The effect of overlapping between subdomains was studied [1] for Re=100. 500
and 1000 on the grid 100x64. Results are shown here (Figure 6) for Re=100
and 1000 as a function of f,. defined as the ratio between the number of nodes
in the overlapping regions and the total number of grid nodes. The number of
nodes was identical for each subdomain. to avoid load balancing problems. This.

234

VECPAR’98 - 3rd International Meeting on Vector and Parallel Processing

hiowever. restricted the overlapping to only a few values, depending on the grid
nodes and on the number of subdomains.

The results at Re=100 (Figure 6a) are markedly different from those at
Re=1000 (Figure 6b). At Re=100 the parallel requires less iterations than the
sequential version and is not sensitive to the number of subdomains. The number
of iterations increases slightly with the overlapping, with the exception of f,=0.4.

At Re=1000 for each case, with 2, 3 or 4 subdomains, there is a value of f,
bevond which there is no reduction of the number of iterations. Furthermore. for
all cases, the number of iterations of the parallel exceeds the number of iterations
of the sequential version.

3.4 Speed-up
The speed-up (5,,) was defined by

. Ts
Sy = == .
7 (3)

where T and 7, stand for the execution time of the sequential and parallel
version of the code. The computing time was the actual wall-clock elapsed time.
as given by the UNIX command time and following the recommendations of ref.
9. '

One must remember that the parallel version performs extra calculations,
because the grid nodes within the overlapping region are calculated twice. Taking
that into account. the expected speed-up values are 1.8. 2.5 and 3.2. for 2. 3 and
4 subdomains. respectively. These values are shown by horizontal lines in Figure
7 and were obtained assuming identical number of iterations for both sequential
and parallel calculations. time per iteration directly proportional to the number
of nodes and negligible communication overhead.

Figure Ta shows that for grid 100x64 and Reynolds number lower than 500
the speed-up exceeded the expected value. The domain splitting was favourable
to the convergence of the algorithm. and the number of iterations was reduced
compared with the sequential version. For Reynolds numbers higher than 500.
the speed-up was below the ideal value, in particular for cases with 3 and 4
subdomains. Nevertheless in real time, in case of 4 subdomains a converged
solution can be obtained in at least 2.6x faster compared with a sequential
calculation. .

Figure 7b shows a fairly uniform trend and all values were close to the max-
1mum speed-up.

4 Conclusions
Results were shown of the simulation of the laminar backward-facing step flow. A

parallelized version of the SIMPLE algorithm was used, based on the partitioning
of the domain. The main conclusions were:

235

FEUP - Faculdade de Engenharia da Universidade do Porto

a) SE i = ~O- - 2subdom.{f=16%)
r P ; =—-=G~—-- 3 subdom.(1=22.5%)
45 A & 4 subdom.(f,=22.5%) |
[A ! !
na
o o
3 A
35 =z -)
S T g
° [K4 \ & o
g < S \ s & &
7] b -Q S
25— S SR NN U
L > N :
E © [SIE g.- 8- C—-% -2
2k N e
[~ - - - O
15
L L L 1 L1
0 200 400 600 800 1000
Re
b) -
asp | — -0— - 2 subdom.(f=7.5%) |
3 |~ -a--- 3 subdom.(f'=14%)
4= I v 4 subdom.(f,220%) ’
[{ !
35
o F
2 e v Vo9 v
3 3 v v
=3 =
@ 25 —mm i F_,?_.Q_N.&.a;&.f;‘ﬁf_fét;f;ﬂ
o 7
2k !
F ——=- == TSRSy e - 8——C
r 7
15 &
1 [il . J - . 1 1 |
0 200 400 600 800 1000
Re

Fig. 7. Speed-up as a function of the Reynolds number, in case of 2, 3 and - subdomains
for two numerical grids. a) 100x64: b) 200x128.

- The minimum number of iterations was obtained for Reynolds number about
400 or 500. depending on the grid size. The convergence pattern was tightly
coupled with the flow pattern, and the number of iterations increased as
soon as a second recirculation region attached to the top wall appeared.

2. The comparison between the sequential and the parallel versions of the al-

gorithm showed that the number of iterations was in many cases identical in
both versions. The communication overhead was 2% of the total computing
time.

. The number of subdomains did not alter the general pattern of the conver-
gence characteristics compared with the sequential version.

The convergence was not affected by domain splitting. even when the inter-
face between the subdomains divided the recirculation region.

236

VECPAR'98 - 3rd International Meeting on Vector and Parallel Processing

Acknowledgments

The authors are grateful to their colleagues F.A. Castro and A. Silva Lopes for
helpful discussions.

This work was carried out as part of PRAXIS XXI research contract N.

3/3.1/CEG/2511/95. entitled “Parallel Algorithms in Fluid Mechanics”.

References

1

w

9.

10.

11.

13.

. P. Areal. Studies of parallelization of algorithms for computational fluid dynamics
(in Portuguese). Master’s thesis, University of Porto (Faculty of Engineering).
Porto. Portugal. 1998. In preparation.

2. B.F. Armaly. F. Durst. J.C.F. Pereira, and B. Schonung. Experimental and the-

oretical investigation of backward-facing step flow. Journal of Fluid Mechanics,
127:473-496, 1983.

. L.NLR. Carvalho and J.M.L.M. Palma. Parallelization of CFD code using PVAf
and domain decomposition techniques, pages 247-257. In [13], 1997.

. F.A. Castro. Numerical Methods for Simulation of Atmospheric Flows over Com-
plex Terrain (In Portuguese). PhD thesis, University of Porto (Faculty of Engi-
neering). Porto, Portugal. 1997.

. F. Dias d’Almeida, F.A. Castro, J.M.L.M. Palma, and P. Vasconcelos. Devel-
opment of a parallel implicit algorithm for CFD calculations. Presented at the
AGARD 77th Fluid Dynamics Panel Symposium on Progress and Challenges in
C'FD Methods and Algorithms. 2-5 October 1995, Seville, Spain, 1995.

- J.H. Ferziger and M. Peri¢. Computational Methods for Fluid Dynamics. Springer.
Berlin. 1996.

. G.A. Geist. A. Beguelin. J.J. Dongarra, W. Jiang. R. Manchek. and V.S. Sun-
deram. PVAf Parallel Virtual Machine. A Users' Guide and Tutorial for Net-
worked Parallel Computing. Scientific and Engineering Computation. The MIT
Press. Cambridge. Massachusetts, 1994.

. N.N. Ghia. G.A. Osswald. and U. Ghia. A direct method for the solution of

unsteady two-dimensional incompressible Navier-Stokes equations. Aerodynamic

Flows. January.

R.W. Hockney. The Science of Computer Benchmarking. Software. Environments

and Tools. SIAM - Society for Industrial and Applied Mathematics. Philadelphia.

USA, 1996.

J. Kim and P. Moin. Application of a fractional step method to incompressible

Navier-Stokes equations. Journal of Computational Physics, 59:308-, 1985.

M. Kurreck and S. Wittig. A comparative study of pressure correction and block-

implicit finite volume algorithms on parallel computers. International Journal for

Numerical Methods in Fluids, 24:1111-1128, 1997.

2. J.J. McGuirk and J.M.L.M. Palma. The efficiency of alternative pressure-

correction formulations for incompressible turbulent flow problems. Computers
€ Fluids. 22(1):77-87. 1993.

JALL.M. Palma and J. Dongarra. editors. Vector and Parallel Processing -~ VEC-
PAR96. Second International Conference on Vector and Parallel Processing - Sys-
tems and Applications. Porto (Portugal). Selected Papers. volume 1215 of Lecture
Notes in Computer Science. Springer, Berlin, 1997.

237

14.

FEUP - Faculdade de Engenharia da Universidade do Porto

S.\". Patankar and D.B. Spalding. A calculation procedure for heat. mass and
momentum transfer in three-dimensional parabolic flows. International Journal of
Heat and Mass Transfer, 15:1787-1806, 1972.

C.M. Rhie and W.L. Chow. Numerical study of the turbulent flow past an airfoil
with trailing edge separation. AI44 Journal. 21(11):1525-1532, 1983,

. R.L. Simpson. Two-dimensional turbulent separated flows. Technical report.

AGARDograph N. 287, 1985,

. H.L. Stone. Iterative solution of implicit approximations of multidimensional par-

tial differential equations. SIAM Journal of Numerical Analysis, 5:530-55%. 196\,

- Y. Zang. R.L. Street, and J.R. Kosef. A non-staggered grid, fractional step method

for time-dependent incompressible Navier-Stokes equations in curvilinear coordi-
nates. Journal of Computational Physics, 114:18-33, 1994.

238

VECPAR'98 - 3rd International Meeting on Vector and Parallel Processing

High Performance Cache Management for
Parallel File Systems

F. Garcia, J. Carretero, F. Pérez and P. de Miguel

Facultad de Informdtica, Universidad Politécnica de Madrid (UPM)
Campus de Montegancedo, Boadilla del Monte, 28660 Madrid, Spain
fgarcia@fi.upm.es

Abstract. Caching has been intensively used in memory and traditional
file systems to improve system performance. However, the use of caching
in parallel file systems has been limited to 1/O nodes to avoid cache
coherence problems. In this paper we present the cache mechanisms im-
plemented in ParFiSys, a parallel file system developed at the UPM.
ParFiSys exploits the use of cache, both at processing and 1/O nodes,
with aggressive prefetching and delayed-write techniques. The cache co-
herence problem is solved by using a dynamic scheme of cache coherence
protocols with different sizes and shapes of granularity. Performance re-
sults, obtained on an IBM SP2, are presented to demonstrate the advan-
tages offered by the cache management methods used in ParFiSys.
Keywords: Parallel file systems, data declustering, cache coherence pro-
tocols, false sharing, multi-files.

1 Introduction

There is a general trend to use parallelism in the 1/O systems to alleviate the
growing disparity in computational and 1/0 capability of the parallel and dis-
tributed architectures. Parallelism in the I/O subsystem is obtained using several
independent 1/O nodes supporting one or more secondary storage devices. Data
are declustered among these nodes and devices to allow parallel access to differ-
ent files, and parallel access to the same file. Parallelism has been used in some
parallel file systems and I/O libraries described in the bibliography (CFS (20].
Vesta [5], ParFiSys [2], PASSION [4], Galley [19], Scotch [11], PIOUS [17}).

Caching has been a technique frequently used in memory and traditional file
systems to improve system performance. Caching {14,2] can be used in parallel
file systems, by allocating a buffer cache at the processing nodes (PN) and 1/O
nodes (ION). This approach improves 1/O performance by avoiding unnecessary
disk traffic, network traffic and servers load, and also by allowing prefetching
and delayed-write techniques {14,2]. However, the use of caching in parallel file
systems has been limited to 1/O nodes because any attempt to maintain caching
at the processing nodes would require a cache coherence protocol.

In this paper we demonstrate that the use of caching at processing nodes is
feasible in parallel file systems. With this aim we show the cache management

239 -

FEUP - Faculdade de Engenharia da Universidade do Porto

policies and mechanisms implemented in ParFiSys', a parallel file system de-
veloped at the UPM?2. ParFiSys exploits the use of caching both at processing
and I/O nodes. It avoids the cache coherence and false sharing problems in an
efficient manner by using a dynamic scheme of cache coherence protocols with
different sizes and shapes of granularity.

The rest of the paper is organized as follows. Section 2 describes ParFiSys
main architectural features. Section 3 presents the cache management imple-
mented in ParFiSys. The cache coherence problem and how ParFiSys solved
this problem is explained in section 4. Performance measurements are shown in
section 5. Finally, section 6 summarizes our conclusions.

2 ParFiSys Architecture

ParFiSys [2,3] is a parallel and distributed file system developed at the UPM to
provide parallel 1/O services for parallel and distributed systems. To fully exploit
all the parallel and distributed features of the 1/O hardware, the architecture
of ParFiSys is clearly divided in two levels: file services and block services (see
figure 1.) The first level is comprised into a component named ParClient. It pro-
vides file services that can be obtained using two mechanisms: linked library or
message passing library. The first is preferred for parallel machines [4, 13], where
a single user is usually expected per processing node (PN). The second is aimed
to be used in distributed systems, where several users may be requesting 1/0
services to the ParClient. Both modalities provide the users with a ParClient
library that includes the POSIX interface and some high-performance extensions
[2] . The main architectural difference between the former models, is that with
the linked library approach the ParClient has to be present on every PN request-
ing 1/0, while the message passing option allows the existence of remote users
for a ParClient. This option is specifically though for distributed file systems
or big scale parallel machines, and it can be used to define groups of users re-
lated with a single ParClient to increase scalability [2]. The ParClient translates
user addresses to logical blocks establishing the connections with the ParServer.
All communication is handled through a high performance 1/0 library, named
ParServer library. This library optimizes the 1/O requests and sends them to
the 1/0 servers via message passing. It also controls the flow of data from the
I/0 servers to the application’s address space and vice-versa. The ParServer, lo-
cated at the input/output nodes (IONs), deal with logical block requests issued
by the ParClient, translating them to the local secondary storage devices. Both
levels intensively use caching to optimize 1/0O operations: the ParClient to avoid
remote operations, and the ParServer to reduce accesses to devices.

ParFiSys uses a very generic distributed partition which allows to create sev-
eral types of file systems on any kind of parallel 1/0 system. A distributed parti-
tion has a unique identifier, physical layout, list of sub-partitions, etc. The physi-
cal layout, represented as the tuple ({NODE,},{CTLR . {DEVy}nc).

' http://laurel.datsi.fi.upm.es/ gp/parfisys.htm!
? ParFiSys has been developed under EU’s ESPRIT Project GPMIMD (P-5404)

240

VECPAR’98 - 3rd International Meeting on Vector and Parallel Processing

PN PN

User User ‘
Q Q .. | Applicstion Q Q . _Q Applicstion
ParClient Lib, ParClient Lib]

ParClient .. ParClient
Fils Management [Flle Management g
{ParServer ler-ry‘§"- £ {ParServer Library | (3

l |
{ NETWORK

IONI

ParServer

Block
Services

Fig. 1. ParFiSys Architecture

describes the set of 1/0 nodes, controllers per node, and devices per controller.
ParFiSys partitions can be modified by the administrator freely, adding or re-
moving devices dynamically. The only restriction to be considered is that devices
being used by the existing applications should not be affected. The current im-
plementation of ParFiSys supports three kinds of predefined file systems on the
partition structure (see figure 2):

— UNIX-like non-distributed file systems, where [INODE| = 1, |CTLR| = 1,
|IDEV|=1. .

— Extended distributed file systems with sequential layout, where NODE| =
k,|CTLR] = n, |DEV| = m. They can be seen as a concatenation of UNIX-
like partitions.

— Distributed file systems striped with cyclic layout, where [INODE| = k,
|CTLR| = n, |IDEV| = m. Blocks are distributed through the partition
devices following a round-robin pattern.

3 Cache Management in ParFiSys

ParFiSys exploits the use of caching both in ParClient and ParServer (see figure
1), allowing multiple readers and writers concurrently. Specially important is the
use of cache at ParClient. Each ParClient has a buffer cache that is maintained
by a ParClient cache manager. When a user request is received in a ParClient.
the whole buffer is analyzed to obtain the list of file blocks associated to the
buffer.

241

FEUP - Faculdade de Engenharia da Universidade do Porto

Extended Cyclic Single

Fig. 2. File Systems Available on ParFiSys

Once the user buffer has been mapped to file blocks, the whole block list is
searched in the ParClient cache with a single search operation. After this step,
two new lists of blocks are obtained: present and absent blocks. The present
blocks, those found on the cache, are immediately copied to the user space. The
absent blocks, those not found in the cache, have to be requested to the 1/0
devices through the ParServer library. This library is conceived as a high-level
device driver that concurrently manages the JON related operations. Requests
not serviced are enqueued and consumed later by a thread that explores the list
of blocks from the queue and generates an independent list of blocks per each
ION. These blocks are requested concurrently to each ParServer, overlapping
I/O and computation (see figure 3.} The result of this stage will be different
depending on the mapping function associated to each logical device. Anyway,
once the set of blocks stored into an 1/O node has been determined, a thread
is awaken to take care of the ParClient-ParServer operations related to this
set of blocks. All the threads execute concurrently, notifying the end of their
operations by synchronizing themselves with a barrier previously established by
the ParServer library. An 1/O operation is finished at this level only when all the
threads have reached the barrier. At this moment, the result is notified to the
cache management procedures and the involved 1/0 operations are finished. The
number of client-server interactions needed depends on the maximum number of
blocks, named grouping factor, that can be requested from each file system on a
single operation.

This cache scheme exploits the parallelism in the accesses, having two rnain
advantages: there is not synchronization among the ParServer involved in an

242

VECPAR’98 - 3rd International Meeting on Vector and Parallel Processing

ParCllent Cache Managerment

distribution

req 7‘ ---------- rec
(frada) - \ h- ot

Fig. 3. Parallel Operations in ParFiSys

I/O operation, and there is not sequentialization in the ParClient-ParServer
communication.

Two additional mechanisms have been used to enhance the behavior of the
cache in ParFiSys: :

Read-ahead Each ParServer reads ahead data using an Infinite Block Looka-
head (IBL) predictor, that computes the number of blocks (n) to be read in
advance. Prefetch is executed in the ParClient using an edaptive predictor, valid
for sequential and interleaved patterns, whose behavior depends on the 1/O pat-
terns exhibited by the local processes. Prefetch is executed asynchronously to
the user requests to enhance the answer time.

Write-before-full This is a delayed-write policy that flush dirty blocks from
the ParClient to the ParServer, and from the ParServer to the 1/O devices,
before free blocks may be needed in the cache. Preflush is activated when a low
threshold, calculated by the write-before-full daemon, is reached. When a write
request is executed, the number of dirty blocks in the cache is computed. If it
is larger than a fixed threshold, a massive flush is executed for the dirty blocks
belonging to the file system storing the file. All the operations are executed
asynchronously to the user requests to avoid delaying the answer time.

4 Avoiding the Cache Coherence Problem

The main problem of using caching at the client nodes is the possibility of having
shared writing of a file from different clients [1,18,10], which might lead to an

243

FEUP - Faculdade de Engenharia da Universidade do Porto

incoherent view of data. Nelson 18] describes two forms of write-sharing: sequen-
tial write-sharing (SWS), that occurs when a client reads or writes a file that
was previously written by another client, and concurrent write-sharing (CWS),
that occurs when a file is simultaneously open for reading and writing on more
than one client. Concurrent write-sharing is not usual in distributed file systems
(1,18], but it is very frequent in parallel file systems [16] and meta-computing
[22].

A cache coherence protocol is required to avoid this problem. The use of
cache coherence protocols has been unpopular in parallel file systems because of
its overhead [16]. Thus, most parallel file systems usually have caching schemes
such as the ones implemented in CFS [20], where only the IONs maintain a buffer
cache for files. This solution avoids cache coherence problems because there only
is a single copy of the data in the whole system. Distributed file systems, where
write sharing is infrequent {18], use cache coherence protocols mostly based on
weak [12] or coarse grain models [18]. However, most existing file systems with
cache coherence protocols fail to provide efficient solutions to the problem of
cache coherence for parallel applications that concurrently write a file. NFS (23],
very popular in commercial environments, is unable to maintain a consistent
view of the file system for parallel applications. AFS [12] does not support cou-
current write-sharing due to the session semantic implemented, which makes
it not suitable for parallel applications. Sprite [18] ensures concurrent write-
sharing coherence by disabling client caches, thus limiting the potential benefits
of caching for many parallel applications. There are very few cache coherence
solutions in parallel file systems. ENWRICH [21] provides a cache coherence so-
lution for parallel file systems, but it is not a general one because client caches
are only used for writing.

Recently other approaches to avoid cache coherence problem in parallel and
distributed file systems have been proposed. An example is the cooperative cache
scheme proposed in [7}, that eliminates the cache coherence problem by avoiding
data replication. This solution, however, reduces the potential parallelism that
the use of data replication may offer.

4.1 ParFiSys coherence model

In order to solve the write-sharing problem, ParFiSys uses a dynamic cache
coherence scheme [9, 10} based on the following protocols:

— Sequential coherence protocol (SCP), that solves the SWS problem and de-
tects the CWS on a file.

— Concurrent coherence protocol (CCP), that solves the CWS problem after
being activated when the SCP detects a CWS situation on a file.

Sequential coherence protocol This protocol ensures coherence in SWS sit-
uations and detects CWS situations on a file. It has a behavior similar to the
Sprite protocol [18]: the servers track open and close operations to know not only
which clients are currently using a file, but whether any of them are potential

244

VECPAR’98 - 3rd International Meeting on Vector and Parallel Processing

writers. When a client opens a file, the event is notified to the server storing the
file descriptor. If there is no CWS for the file, the server looks whether another
client has updated the file data in its local cache, because of the delayed-write
policy, and requests it to flush the data. When the server has the most up to
date copy of the file, a message is sent to the client to enable local caching for
the file. No more interactions with the server are needed to maintain coherence,
thus alleviating overhead. When a CWS situation is detected by the server, a
message is sent to all the clients with the file open to activate the CCP. When
the CWS situation disappears, a message is sent to all the clients with the file
open to deactivate the CCP.

SCP has been optimized to reduce client-server interactions by sending co-
herence messages to the servers only when a change of the client local state of
the file occurs. The local state of a file changes when it is open the first time,
when it was open for read and it is open for write, when it is closed for write
and it remains open for read, and when it is closed by the last user in the client.
SCP has also been optimized to reduce servers load by distributing the protocol
overhead among all servers. Each server executes SCP only for the files whose de-
scriptors are stored on it, which alleviates the bottleneck of a centralized service
and improves scalability.

Concurrent coherence protocol This protocol solves the CWS problem. It is
activated when a CWS is detected on a file, being executed on each access to the
file while the CWS situation remains. CCP is based on invalidations, directories
and the existence of a exclusive write-shared copy of data.

The main problem in cache coherence protocols is the false sharing situation
generated when multiple processes, belonging to the same parallel application,
access the same file for writing. To alleviate false sharing problems, it would
be desirable to allow the parallel applications to adjust the granularity of the
protocol to their 1/O patterns. ParFiSys ensures this by allowing the users to
define coherence regions. A coherence region is a disjoint subset of the file used
as the coherence unit. It has two main features: size and shape. The size of a
region may range from the whole file to byte. The shape of a region can be
defined according to the most frequent parallel access patterns: sequential and
interleaved (see figure 4).

The applications can define the mapping of the regions on a file using four
parameters (see figure 4):

Register size, minimum unit for coherence.

Register stride, width of the register groups into each segment.
Segment size, number of register groups in a segment.

Segment stride, distance between two segments with the same pattern.

This model of region is suitable to map very different parallel 1/O patterns.
Moreover, it allows to define optimal regions, the best suited to the 1/0 access
pattern, to minimize coherency overhead. Optimal regions are defined on a file
when:

245

FEUP - Faculdade de Engenharia da Universidade do Porto

i1 Whole file

Register size
-—

3 Partitioned file

block level

Interleaved

Interleaved and
segmented

Segment stnde

Interleaved regions

Fig. 4. Some Coherence Region Patterns

1. The number of regions is equal to the number of process in the parallel
application.
2. Each process only accesses the data of a single region.

The use of optimal regions allows to adjust perfectly the protocol granularity
and the 1/0 pattern of the applications, offering coherence with a minimal cost.
This coherence regions model can be applied to the High Performance Fortran
distributions [8], Vesta interface [5] and MPI-10 interface [6].

CWP compels the clients to check the coherence state of the region on every
access to it by acquiring the appropriate read or write tokens. When a client
does not have the appropriate token, a message to the region’s manager must be
sent to request the desired rights on the region. The server stores a callback for
each region in a coherence directory to trace the coherence state of the region.
If a conflict is detected, the callbacks are revoked. The region’s manager guar-
antees that at any given time there is a single read-write token or any number
of read-only tokens. When a write token is revoked in a client, the client must
flush any dirty data of the region. If the new token is for read the token in the
previous writer is changed from writing to read-only. When the appropriated
rights on a region are acquired, they remain until explicit revocation, thus elimi-
nating the overhead for future accesses. Two main design mechanisms were used
in ParFiSys to define the coherence protocols: callback and directory location
and management, and callback revocation policy. Two policies can be used for
the first issue: centralized (C), where coherence for all the regions of a file is
maintained by the server storing the file descriptor (region manager), and dis-
tributed (D), where the information of the coherence region is distributed among,
several servers, each one being responsible of maintaining the coherence of the
regions allocated to it. Two approaches can be used to revoke callbacks when a
conflict appears: server driven (SD) and client driven (CD). In SD, the server

246

VECPAR’98 - 3rd International Meeting on Vector and Parallel Processing

Throughput (MB/s)
3332 8

255 1KB KB 1 KR BAKE 25 KB 1ME
Message size

Fig. 5. Point-to—péint communication throughput

sends revocation messages to all the clients caching data from the conflictive
region. In CD, the client generating the conflict sends revocation messages, on
behalf of the servers, to other clients caching data from the conflictive region.
Several CCP have implemented in ParFiSys by combining different management
and revocation policies: C-SD, C-CD, D-SD, and D-CD.

5 Performance Evaluation

This section describes the performance experiments designed to test cache man-
agement in ParFiSysa and the results obtained by running them on an IBM SP2
machine.

The IBM SP2 used is a distributed-memory MIMD machine with 14 nodes
available to execute parallel applications. Each node has a 66 MHz POWER2
RISC System/6000 processor with 256 MB of memory, being connected to both
an Ethernet and IBM’s high performance switch. Because of the IBM's message-
passing libraries (PVM, MPL or MPI) cannot operate in a multi-threaded envi-
ronment, we have implemented a multi-threaded subset of MPI using TCP/IP on
top of the high performance switch. To characterize the message-passing perfor-
mance of our communication library, we executed two simple benchmarks on the
SP2. The first evaluates point-to-point communication throughput by engaging
two processes in a sort of ping-pong. One process reads the value of a wall-time
clock before invoking a send operation and it then blocks in a receive opera-
tion. Once the latter operation finishes, the clock is read again. The throughput
achieved is computed with a half of the communication time and the message
size. Figure 5 shows the results obtained for this benchmark. The maximuin
throughput between two nodes is approximately 60 MB/s.

The second benchmark emulates ParFiSys reading and writing activity. We
used 4 servers and varied the number of clients from 1 to 8. Clients send (write
to servers) or receive (read from servers) 100 MB declustered across the servers.
Each client sends, or receives, the same amount of data to, or from, the servers

247

Total throughput (MB/s)

Throughput (M8/s)

FEUP - Faculdade de Engenharia da Universidade do Porto

1) qpenseenreeennanennnaans 149
. ’,"m— =1 cliont

| -« 2clionts 12 -2 clients
i -4 clisnts -4 chients
20 { ~-Bclionts e =8 clients

Total throughput (MB/s)

b
1 2 ¢ 2 1 x 64

Access size (KB) Access size (KB)

Fig. 6. Total message passing throughput in ParFiSys

~~0KB

Access size (KB) Access size (KB)

Fig. 7. Prefetching and write-before-full performance

using a fixed record size. Figure 6 shows the total throughput obtained for read-
ing and writing operations. As shown in the figure, the maximum throughput
achieved increases with the number of clients and the record size.

All experiments described below were executed using 4 ION, with a single
simulated disk with a bandwidth of 5 MB/s on each. In all tests a 4 MB per-
client cache and a 16 MB per-ION cache were used. The file size used in all
experiments was 100 MB. The stripe-width was 4 and the stripe-unit size was 8
KB.

5.1 Prefetch and write-before-full evaluation

Figure 7, left, shows the throughput obtained when a client sequentially reads
a file of 100 MB. This test varied the read-ahead value, from 0 KB to 256 KB,
and the access size, from 1 KB to 64 KB.

Figure 7, right, shows the throughput obtained when a client sequentially
writes a file of 100 MB using either write-through or write-before-full. The
threshold used in write-before-full was a 95 % of the ParClient cache size. The

248

Total throughput (MB/s)

VECPAR'98 - 3rd International Meeting on Vector and Parallel Processing

results obtained demonstrate that having a cache at processing nodes, managed
using prefetch and write-before-full, is a useful mechanism to increase read and
write performance in parallel file systems.

5.2 Cache Coherence Performance in ParFiSys

Two benchmarks were defined to evaluate the ParFiSys coherence protocol and
to demonstrate their feasibility for parallel applications: a segmented concur-
rent write benchmark (SCWB) and a interleaved concurrent write benchmark
(ICWB). The SCWB, similarly to the one described in [17], is a parallel pro-
gram with partitioned access that divides a file into contiguous segments, one
per process, with each segment accessed sequentially by a different process. In
the ICWB, each process concurrently writes the file in a interleaved fashion.
The parallel program for each benchmark consists of 1, 2, 4 and 8 processes that
concurrently write a file of 100 MB. Two access sizes are used: 8 KB and 32 KB.

i 0
~-WHOLE FRE i —-WHOLE FILE
S | - ;
-« NOCACHE | " = -<-NO CACHE :
s ~BLC ! el - +BLC
- OPT_C | Z » -OPT.C ;
2% / g A
. = -7
E H 7
a T e
23 £ 15 e Pl
g T
H P
i3 & ,/ -~
E 19 -~ ././
° g
I A g
3 P
3 PO e N —
o
4 R - 1 Z 4
Number of clients Number ot clients

Fig. 8. Concurrent segmented and interleaved benchmark for 8 KB access size

Figures 8 and 9 show the aggregated bandwidth for concurrent segmented
and interleaved 1/0 patterns, respectively. Several cache coherence protocols us-
ing SCWB and ICWB are evaluated: client cache deactivated (NO CACHE),
file granularity (WHOLE F.), block granularity for centralized protocol (BL_C),
and optimal regions for centralized protocol (OPT_C). The first relevant result
obtained shows that maintaining coherency with file granularity is the worst
method, mainly due to false sharing. Deactivating cache is very similar to the
block centralized, because the number of client-server interactions is almost the
same. The small difference observed between deactivating cache and block dis-
tributed is mainly due to the lower contention generated on the servers by the
coherence protocols. This feature also makes the block distributed protocol more
scalable. The best results are obtained using optimal regions, both centralized
and distributed. This behavior is mainly due to the false sharing elimination,

249

Totat throughput (MB/s)

FEUP - Faculdade de Engenharia da Universidade do Porto

4 © .
~~WHOLE FILE ~~WHOLE FILE '
* -»-NO CACHE BT | -o-NOCACHE B
ol | ~8Lc w)| ~BC
-OPT_C K - OPT_C H
2 XL :
& ;
2 f; % :
I3 H
I £ 15
...... 4 3 et
JUPES S iaaa I B
19 —F_.'d'*"'-‘ I S PR ’_’/ :
-’ e o H
Sty I SOt :
SRgygem s =
(2 SR e [2 S
0 +
1 ? 4 £ 1 2 4 £
Number of clients Number of clients

Fig. 9. Concurrent segmented and interleaved benchmark for 32 KB access size

the main problem with whole file granularity, the minimization of the coher-
ence load, the main problem in block granularity protocols, and the local cache
utilization, the main problem in cache deactivation.

Concurrent write benchmarks for segmented and interleaved 1/O patterns
show that optimal regions provide a performance very close to the ideal one.
Moreover, they show a good scalability compared with the other protocols, whose
performance decreases very quickly as the number of clients is increased.

Figure 10 compares the bandwidth obtained in the SCWB using normal files
with optimal regions for centralized and distributed protocols, versus the use of
multi-files. A multi-file [15, 2] is a collection of subfiles, each of which is a separate
sequence of bytes. A multi-file is created by a parallel program with a certain
number of subfiles, usually equal to the number of processes in the program,
with each process accessing its own subfile. A multi-file combines the advantages
of a single file, single name for a single data set, with those of multi-files, that
are independently addressable. Multi-files are an alternative mechanism to the
segmented patterns used in SCWB. The results are very similar in all cases,
being a little better for multi-files because of the lighter writing operation on each
subfile than on a normal file with concurrent access. The proposed protocols with
normal files offer an efficient alternative to the use of multi-files for segmented
1/0 patterns, because present a performance very similar with the advantage of
using less specialized and more portable interfaces.

6 Conclusions

This paper has presented the design of the cache scheme implemented in ParFiSys.
ParFiSys allocates buffer caches at the processing and 1/0 nodes, improving 1/0
performance by avoiding unnecessary disk traffic, network traffic and servers
load, and by allowing prefetching and delayed-write techniques. The cache co-
herence problem is solved, without loss of scalability, by using a dynamic scheme
of cache coherence protocols where data coherence is maintained on user-defined

250

Total throughput (MB/s)

VECPAR'98 - 3rd International Meeting on Vector and Parallel Processing

) 4
2 =+ MULTIFILE _. ® ~-MULTIFILE
A woPtc | T - OPT_C ~
— e [et
) g -
0
2% g
2=
20 £
g
4
15 £ P
el J 15 .
,,,,,,, s L i
104 =77 lod
e " !
3
s |
i
] {
1 2 4 5 1 2 i]
Number of clients Number of clients

Fig. 10. Optimal regions in SCWB versus multi-files for 8K B and 32 KB access size

coherence regions for the conflictive file. The utilization of two protocols, SWP
and CWP, allows to afford all the conflictive situations for SWS and CWS pat-
terns, as demonstrated with the evaluation results obtained by running ParFiSys
on an IBM SP2. The benchmarks used to test the model show considerably bet-
ter results for our model than for other existing models. The aggregated band-
width obtained is higher when using our model, mainly because false sharing
is reduced, coherence load is minimized, and local caches at processing nodes
are heavily used. The proposed protocols also offer an efficient alternative to
the use of multi-files for segmented 1/0 patterns, because present a very simi-
lar performance with the advantage of using less specialized and more portable
interfaces.

Acknowledgments We want to express our grateful acknowledgment to the
CESCA institution for giving us access to their IBM SP2 machine.

References

1. M. Burrows. Efficient Data Sharing. PhD thesis, Computer Laboratory, University
of Cambridge, December 1988.

2. J. Carretero. Un Sistema de Ficheros Paralelo con Coherencia de Cache para
Multiprocesadores de Proposito General. PhD thesis, Universidad Politécnica de
Madrid, May 1995.

3. J. Carretero, F. Pérez, P. De Miguel, F. Garcia, and L. Alonso. Performance In-
crease Mechanisms for Parallel and Distributed File Systems. Parallel Computing,
(23):525-542, August 1997.

4. Alok Choudhary, Rajesh Bordawekar, Sachin More, K. Sivaram, and Rajeev
Thakur. PASSION runtime library for the Intel Paragon. In Proceedings of the
Intel Supercomputer User’s Group Conference, June 1995.

5. P. Corbett and D. Feitelson. The Vesta Parallel File System. ACM Transactions
on Computer Systems, 14(3):225-264, August 1996.

6. P. Corbett and D. et al. Feitelson. MPI-IO: A Parallel File 1/O Interface for MPI.
Technical Report NAS-95-002, NASA Ames Research Center, June 1995.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

FEUP - Faculdade de Engenharia da Universidade do Porto

. T. Cortes, S. Girona, and J Labarta. Dessign Issues of a Cooperative Cache with no
Coherence Problems. In 5th Workshop on I/0 in Parallel and Distributed Systems
(IOPADS’97), San Jose, CA, November, 1997.

High Performance Fortran Forum. High Performance Fortran Language Specifica-
tion. May 1993.

F. Garcfa. Coherencia de Cache en Sisternas de Ficheros para Entornos Dis-
tribuidos y Paralelos. PhD thesis, Universidad Politécnica de Madrid, Esparia.
September 1996.

F. Garcia, J. Carretero, F. Pérez, P. De Miguel, and L. Alonso. Cache Coherence in
Parallel and Distributed File Systems. In 5th EUROMICRO Workshop on Parallel
and Distributed Processing. IEEE. London, pages 60-65, January 1997.

G. Gibson. The Scotch Paralell Storage Systems. Technical Report CMU-CS-95-
107, Scholl of Computer Science, Carnegie Mellon University, Pittsburbh, Penn-
sylvania, 1995.

J. Howard and et al. Scale and Performance in a Distributed File System. ACM
Transactions on Computer Systems, 6(1):51-81, February 1988.

J. Huber and C. L. et al. Elford. PPFS: A High Performance Portable Parallel
File System. In Proceedings of the 9th ACM International Conference on Super-
computing, pages 385-394, July 1995. .

D. Kotz. Prefetching and Caching Techniques in File Systems for MIMD Multi-
processors. PhD thesis, Duke University, USA, April 1991.

D. Kotz. Multiprocessor file system interfaces. In Proceedings of the 2nd. Interna-
tional Conference on Parallel and Distributed Information Systems, pages 194-201,
May 1993.

D. Kotz and N. Nieuwejaar. File Systern Workload on a Scientific Multiprocessor.
IEEE Parallel and Distributed Technology. Systems and Aplications, pages 134-
154, Spring 1995.

S. A. Moyer and V. S. Sunderam. Scalable concurrency control for parallel file
systems. Technical Report CSTR-950202, Department of Math and Computer
Science, Emory University, Atlanta, GA 30322, USA, 1995.

M. Nelson, B. Welch, and J. Ousterhout. Caching in the Sprite Network File
System. ACM Transactions on Computer Systems, 6(1):134-154, February 1988.

N. Nieuwejaar and D. Kotz. The Galley Parallel File System. Technical Report
PCS-TR96-286, Darmouth College Computer Science, 1996.

J. Pieper. Paralle] /O Systems for Multicomputers. Technical Report CMU-CS-
89-143, Carneghie Mellon University, Computer Science Department, Pittsburgh,
USA, 1989.

A. Purakayastha, C. S. Ellis, and D. Kotz. ENWRICH: A Computer-Processor
Write Caching Scheme for Parallel File Systems. Technical Report TRCS-1995-
22, Department of Computer Science, Duke University, Durhan North Carolina.
October 1995.

J. del Rosario and A. N. Choudhary. High-Performance 1/O for Massively Parallel
Computer s. IEEE Computer, pages 59-68, March 1994.

R. Sandberg, D. Goldberg, S. Kleiman, D Walsh, and B. Lyon. Design and Im-
plementation of the SUN Network Filesystem. In Proc. of the 1985 USENIX
Conference. USENIX, 1985.

252

VECPAR'98 - 3rd International Meeting on Vector and Parallel Processing

Parallel Jacobi-Davidson for Solving
Generalized Eigenvalue Problems

Margreet Nool! and Auke van der Ploeg?

t CWI, P.O. Box 94079, 1090 GB Amsterdam, The Netherlands
Margreet.Nool@cwi.nl

MARIN, P.O. Box 28, 6700 AA Wageningen, The Netherlands
A.v.d.Ploeg@marin.nl

Abstract. We study the Jacobi-Davidson method for the solution of
large generalized eigenproblems as they arise in MagnetoHydroDynamics.
We have combined Jacobi-Davidson (using standard Ritz values) with
a shift and invert technique. We apply a complete LU decomposition in
which reordering strategies based on a combination of block cyclic reduc-
tion and domain decomposition result in a well-parallelizable algorithm.
Moreover, we describe a variant of Jacobi-Davidson in which harmonic
Ritz values are used. In this variant the same parallel LU decomposi-
tion is used, but this time as a preconditioner to solve the ‘correction’
equation. .

The size of the relatively small projected eigenproblems which have to
be solved in the Jacobi-Davidson method is controlled by several pa-
rameters. The influence of these parameters on both the parallel perfor-
mance and convergence behaviour will be studied. Numerical results of
Jacobi-Davidson obtained with standard and harmonic Ritz values will
be shown. Executions have been performed on a Cray T3E.

1 Introduction

Consider the generalized eigenvalue problem
Az =ABz, A,Be (NN, (1)

in which A and B are complex block tridiagonal N;-by-N; matrices and B is
Hermitian positive definite. The number of diagonal blocks is denoted by N
and the blocks are n-by-n, so N; = N x n. In close cooperation with the FOM
Institute for Plasma Physics “Rijnhuizen” in Nieuwegein, where one is interested
in such generalized eigenvalue problems, we have developed a parallel code to
solve (1). In particular, the physicists like to have accurate approximations of
certain interior eigenvalues, called the Alfvén spectrum. A promising method for
computing these eigenvalues is the Jacobi-Davidson (JD) method [3, 4]. With
this method it is possible to find several interior eigenvalues in the neighbourhood
of a given target o and their associated eigenvectors.

In general, the subblocks of A are dense, those of B are rather sparse (=~ 20%
nonzero elements) and N; can be very large (realistic values are N = 500 and

253

FEUP - Faculdade de Engenharia da Universidade do Porto

n = 800), so computer storage demands are very high. Therefore, we study the
feasibility of parallel computers with a large distributed memory for solving (1).

In [2], Jacobi-Davidson has been combined with a parallel method to com-
pute the action of the inverse of the block tridiagonal matrix A — ¢B. In this
approach, called DDCR, a block-reordering based on a combination of Domain
Decomposition and Cyclic Reduction is combined with a complete block LU de-
composition of A —¢B. Due to the special construction of L and U , the solution
process parallelizes well.

In this paper we describe two Jacobi-Davidson variants, one using standard
Ritz values and one harmonic Ritz values. The first variant uses DDCR to trans-
form the generalized eigenvalue problem into a standard eigenvalue problem. In
the second one DDCR has been applied as a preconditioner to solve approximately
the ’correction’ equation. This approach results also into a projected standard
eigenvalue problem with eigenvalues in the dominant part of the spectrum. In
Section 2 both approaches are described. To avoid that the projected system be-
comes too large, we make use of a restarting technique. Numerical results, based
on this technique, are analyzed in Section 3. We end up with some conclusions
and remarks in Section 4.

2 Parallel Jacobi-Davidson

2.1 Standard Ritz values

The availability of a complete LU decomposition of the matrix A — o B gives
us the opportunity to apply Jacobi-Davidson to a standard eigenvalue problem
instead of a generalized eigenvalue problem. To that end, we rewrite (1) as

(A-0B)z = (XA -0)Bz. (2)
If we define Q := (4 - 0B)™'B then (2) can be written as

Qz = uz, withp:/\—i—aﬁz\za+i. (3)
The eigenvalues we are interested in form the dominant part of the spectrum
of @, which makes them relatively easy to find. The action of the operator @
consists of a matrix-vector multiplication with B, a perfectly scalable parallel
operation, combined with two triangular solves with L and U.

At the k-th step of Jacobi-Davidson, an eigenvector z is approximated by a
linear combination of k search vectors vj, j = 1,2,---,k, where k is very small
compared with N;. Consider the Ny-by-k matrix V;,, whose columns are given
by v;. The approximation to the eigenvector can be written as Vis, for some
k-vector s. The search directions v; are made orthonormal to each other, using
Modified Gram-Schmidt (MGS), hence ViV = 1. '

Let 6 denote an approximation of an eigenvalue associated with the Ritz
vector u = Vis. The vector s and the scalar 6 are constructed in such'a way that

254

VECPAR’98 - 3rd International Meeting on Vector and Parallel Processing)

the residual vector r = QVis — 6V s is orthogonal to the k search directions.
From this Rayleigh-Ritz requirement it follows that

VEQVis = 0V Vis <= V' QVys = bs. (4)

The size of the matrix V;*QV}, is k. By using a proper restart technique & stays
so small that this ’projected’ eigenvalue problem can be solved by a sequential
method.

In order to obtain a new search direction, Jacobi-Davidson requires the solu-
tion of a system of linear equations, called the ‘correction equation’. Numerical
experiments show that fast convergence to selected eigenvalues can be obtained
by solving the correction equation to some modest accuracy only, by some steps
of an inner iterative method, e.g. GMRES.

Below we show the Jacobi-Davidson steps used for computing several eigen-
pairs of (3) using standard Ritz values.

step 0: initialize
Choose an initial vector vy with |jvi||]2 = 1; set V; = [v1];
Wi=[Qu; k=1 it=1; neo =0
step 1: update the projected system
Compute the last column and row of Hj, := VW,
step 2: solve and choose approximate eigensolution of projected system
Compute the eigenvalues 6;,- - -, 6, of Hy and choose 6 := 6; with |6;| maximal
and 0; # pi, for i = 1,---,n.,; compute associated eigenvector s with ||s|; = 1
step 3: compute Ritz vector and check accuracy
Let u be the Ritz vector Vi s; compute the residual vector r := Wi.s — fu;
if |Ir]j2 < tolsyp.|6] then
Ney 1= New + 15 fin,, 1= 0; if ney = Ny stop; goto 2
else if it = iter stop
end if
step 4: solve correction equation approximately with #1501 steps of GMRES
Determine an approximate solution % of z in
(I—wu)(Q-6N{I-wu")z=—-r A v'z2=0
step 5: restart if projected system has reached its maximum order
if k =m then
5a: Set k = kmin + ney. Construct C € C™** € Hyp;
Orthonormalize columns of C; compute Hy := C*H,,C
5b: Compute V := V,,C; Wy := W,,,C
end if
step 6: add new search direction
k:=k+1; it :=it+1; call MGS [Vi_y, Z]; set Vi = [Vioy, 3]; Wi = Wi_1,QZ];
goto 1

Steps 2 and 5a deal with the small projected system (4). Those sequential

steps are performed by all processors in order to avoid communication. The basic
ingredients of the other steps are matrix-vector products, vector updates and

255

FEUP - Faculdade de Engenharia da Universidade do Porto

inner products. Since, for our applications, N, is much larger than the number
of processors, those steps parallelize well.

2.2 Harmonic Ritz values

For the introduction of harmonic Ritz values we return to the original generalized
eigenvalue problem (1). Assume (9, Vi) approximates an eigenpair (), z), then
the residual vector r is given by

r = AVis — §BVs.

In case of standard Ritz values, the correction vector r has to be orthogonal to
Vi; the harmonic Ritz values approach asks for vectors r to be orthogonal to
(A —0B)V;. Let Wy denote (A — 0B)Vj, then we have

r = AVis — 0BV,s
=(A~0B)Vis— (0 - 0)B(A - 0B)~ (A~ oB)V;s (5)
=Wis— (0 —0)B(A - 6B)"1W,s.

Obviously, v = (ﬁio) is a Ritz value of the matrix B(A-0B)~! with respect
to Wi. To obtain eigenvalues in the neighborhood of o, v must lie in the dominant
spectrum of B(4 — 0B)~!. The orthogonalization requirement leads to

VWk*WkS = Wk*BVk,S. (6)
To obtain a standard eigenvalue problem we require W.*W, = I. By introducing
C:=(A-0B)*(4- oB) this requirement gives
Wi*Wi = Vi* (4 - 0B)"(A-oB)V, = V,*CV; = I (7)
and we call Vi a C-orthonormal matrix.

The new search direction U must be C-orthonormal to Vi—1, which implies
that
(8)

(43 (Y3

lloelle — lwlly’

Vi-1™r =0 and Up =

where wy, = (4 - 0.B)u;.

To move from standard to harmonic Ritz values, the adjustments in the
algorithm are not radical. In comparison to the original implementation, the
harmonic case requires two extra matrix-vector multiplications and in addition
extra memory to store an Ni-by-k matrix. The main difference is that the LU
decomposition of A—o B is used as a preconditioner and not as a shift and invert
technique.

3 Numerical results

MESSAGE PASSING implementation using Cray intrinsic SHMEM routines for data
transfer and communication. For more details, we refer to [2].

256

VECPAR'’98 - 3rd International Meeting on Vector and Parallel Processing

T T

02| - . . -

0a +
0 028 -t
H .+
ez L
® 4 +
c
o2t . +
3 .
=oz : w

+
4

02 4 + Ly

o8 .ot .

016 L .

02 .15) 005

=01 ~0.05
Real axis

Fig. 1. The eigenvalue distribution of problem 5

3.1 Problems

We have timed five MHD problems of the form (1). The Alfvén spectra of Prob-
lems 1, 2 and 3, on the one hand, and Problems 4 and 5, on the other hand,
do not correspond because different MHD equilibria have been used. For more
details we refer to CASTOR [1]. The choices of the acceptance criteria will be
explained in the next section.

1 A small problem of N = 64 diagonal blocks of size n = 48. We look for
eigenvalues in the neighbourhood of ¢ = (~0.08,0.60), and stop after 10
eigenpairs have been found with tol,;p = 108 and tol,;p = 10-S. The
experiments have been performed on p = 8 processors.

2 The size of this problem is four times as big as that of the previous problem;
N =128 and n = 96. Again, we look for eigenvalues in the neighbourhood
of ¢ = (-0.08,0.60), and stop after 10 eigenpairs have been found with
tolsgp = 1078 and tolpyp = 10~6. The experiments have been performed
on p = 8 processors.

3 The same as Problem 2, but performed on p = 32 processors.

4 The size of this large problem is: N = 256 and n = 256. We took o =
(=0.15,.15) and look for N., = 12 eigenpairs with tol,yp = 10~% and
tolpyp = 107°. The experiments are performed on p = 128 processors.

5 The size of this very large problem is: N = 4096 and n = 64, we took
o = (—0.10,.23) leading to another branch in the Alfvén spectrum. Now, we
look for N, = 20 eigenpairs with tol,;p = 108 and tol)yp = 105, For
this problem a slightly different acceptance criterion has been applied:

~ 1
lIrllz < tolnsp.|o + ;I.Hu”g. (9)

For the harmonic case, the 2-norm of v can be very large, about 10%, so the
results can be compared with tol,;p = 1076, At present, we prefer to control
the residue as described in Section 3.2. Figure 1 shows the distribution of 20
eigenvalues in the neighborhood of ¢ = (-0.10, .23).

257

FEUP - Faculdade de Engenharia da Universidade do Porto

3.2 Acceptance criterion

For the standard approach we accept an eigenpair (o+ L, u) if the residual vector
satisfies:
lirll = (@ = vullz < tolsyp.lv|, with |jull; =1 (10)

and for the harmonic approach we require:
1 1 .
lIrll = I(A = (o + =)) Bull2 < tolasp.lo + b with fufle = 1. (11)

To compare both eigenvalue solvers it is not advisable to choose the tolerance
parameters tol;yp equal to tol p in (10) and (11), respectively. There are two
reasons to take different values: firstly, within the same number of iterations
the standard approach will result into more eigenpair solutions that satisfy (10)
than into solutions that satisfy (11). Secondly, if we compute for each accepted
eigenpair (A, u) the true normalized residue 7 defined by

_ 4= 2BJull,
= Tl

then we see that the harmonic approach leads to much smaller vy values.

In Figure 2, the convergence behaviour of both the standard and harmonic
approach is displayed, with and without restarts. A o indicates that the eigenpair
satisfies (10) or (11), a x denotes the v value. We observe that the accuracy
for the eigenpairs achieved by means of harmonic Ritz values is better than
suggested by tol;,;p. On the other hand, tol;;p seems to be too optimistic about
the accuracy compared to the 7 values shown in Figure 2. In our experiments we
took tolsyp = 107% and tol,yp = 10~ and tolysp = 10-5. It is not yet clear to
us how these parameters depend on the problem size or the choice of the target.

(12)

3.3 Restarting strategy

The algorithm has two parameters that control the size of the projected system:
kmin and m. During each restart, the kp;,, eigenvalues with maximal norm and
not included in the set of accepted eigenvalues, that correspond to the k,,,;,, most
promising search directions are maintained. Moreover, since an implicit deflation
technique is applied in our implementation, the n,, eigenpairs found so far are
kept in the system too. The maximum size m should be larger than k,,,:,, + Ney,
where N, denotes the number of eigenvalues we are looking for. The influence
of several (km;n,m) parameter combinations on both the parallel performance
and convergence behaviour is studied.

3.4 Timing results of (kmin,m) parameter combinations

For each experiment we take m constant and for k., we choose the values
5,10, -+, m — Ng,. In Figures 4,5, 6 and 7, the results of a single m value have
been connected by a dashed or dotted line. Experiments with several m values

258

VECPAR’98 - 3rd International Meeting on Vector and Parallel Processing

iterations

Fig. 2. The two upper plots result on problem 4 using standard Ritz values, the lower
two on the same problem but using harmonic Ritz values. The first and third one show
the convergence behaviour of Jacobi-Davidson restarting each time when the size of the
projected system reaches m = 37, where kmin = 25 and kmin = 20, respectively. The
second and fourth plots demonstrate the convergence in case of no restarts. The process
ended when N, = 12 eigenvalues were found. It may happen that two eigenvalues are
found within the same iteration step.

have been performed. In the plots we only show the most interesting m values;
m reaches its maximum if N, eigenpairs were found without using a restart.
In the pictures this is indicated by a solid horizontal line, which is of course
independent of krin. If the number of iterations equals 80 and besides less than
Ne, eigenpairs have been found, we consider the result as negative. This implies
that, although the execution time is low, this experiment cannot be a candidate
for the best (kpin,m) combination.

Before we describe the experiments illustrated by Figures 4, 5, 6 and 7 we
make some general remarks:

— We observed that if a (kjin,m) parameter combination is optimal on p
processors, it is optimal on g processors too, with p # q.

— For kmin small, for instance kn;n = 5 or 10, probably too much information
is thrown away, leading to a considerable increase of iteration steps.

— For k,,:» large the number of restarts will be large at the end of the process;
suppose that in the extreme case, kinin = m— N, already N, —1 eigenpairs
have been found, then after a restart k becomes kpn + Ney—1=m-1.
In other words, each step will require a restart. In Figure 3, the number of

259

FEUP - Faculdade de Engenharia da Universidade do Porto

30
v
25 :
20
o
§15 *
¢ 10 L
I* . / / x
st Y4 s s
i g
of EXZowa .
-5
0 10 20 30 40

k

min
Fig.3. The number of restarts needed to compute N, eigenvalues of Problem 2.
Results are shown for different m values: m = 20 (v--), m = 25 (+ — - line),
m =30 (0 — — line), m = 35 (x -- - line), m = 40 (> — - line), m = 45 (O — — line).

restarts is displayed corresponding to the results of Problem 2 obtained with
harmonic Ritz values.

— The number of iterations is almost independent of the number of processors
involved; it may happen that an increase of the number of Processors causes
a decrease by one or two iterations under the same conditions, because the
LU decomposition becomes more accurate if the number of cyclic reduction
steps increases at the cost of the domain decomposition part.

The first example (Figure 4) explicitly shows that the restarting technique
can help to reduce the wall clock time for both the standard and harmonic
method. The minimum number of iterations to compute 10 eigenvalues in the
neighborhood of ¢ is achieved in case of no restarts, viz, 53 for the standard case,
51 for the harmonic case. The least time to compute 10 eigenvalues is attained
for kp.in = 15 and m = 30, 35, but also for k,,;, = 10and m = 30,35 and m = 40
and ki = 15,20,25 leads to a reduction in wall clock time of about 15 %. The
harmonic approach leads to comparable results: for (kmin,m) = (15,30 : 35),
but also (kmin,m) = (10,30 : 35) and (kpin,m) = (15 : 25,40) a reasonable
reduction in time is achieved. The score for kmin = 5 in combination with
m = 35 is striking, the unexpected small number of iterations in combination
with a small k,,;, results into a fast time.

The plots in Figure 5 with the timing results for the Jacobi-Davidson process
for Problem 2 give a totally different view. There is no doubt of benefit from
restarting, although the numbers of iterations pretty well correspond with those
of Problem 1. This can be explained as follows: the size of the projected system
k is proportionally much smaller compared to N;/p than in case of Problem
1; both the block size and the number of diagonal blocks is twice as big. For
Problem 1 the sequential part amounts 45% and 36% of the total wall clock time,
respectively, for the standard and harmonic Ritz values. For Problem 2 these
values are 10.5% and 8%, respectively. These percentages hold for the most
expensive sequential case of no restarts. The increase of JD iterations due to
several restarts can not be compensated by a reduction of serial time by keeping

260

VECPAR’98 - 3rd International Meeting on Vector and Parallel Processing

2.8 = A 8
r .
; / 80 v\\ v
» .
° 4 ha R/ \
c 26 B 75 v
8 \1. _/ v‘”_‘,///d g x \4-.\’
3 78~ 7 870 -
o R 78 2 5y
£24 N 7 g Mo
[=) x fﬂ\l/. Le65 R\"_\
;’ / Is 1 " N D\'I»b
£ R e 60} Ny e
=22 o » \\:E_..«
‘*;,B(.-" 55 Cethpsp
2 50
0 10 20 30 40 50 10 20 30 40 50
kmin kmin
3.2 85
P
o 3 4, / F % "
e N I° X Sa! 751]\
8 AR TN B R s [WY
o NN =T 570 \
©w28 A [0y = \
c \b —’§f T d 65 X
o A 2 N
2 ! * AN
2.6 A 60 N ®
£ e N N
- M 55 wile <
24 x B Res
) 50
0 10 20 30 40 50 0 10 20 30 40 50
kmin kmin

Fig. 4. The upper pictures result on problem 1 using standard Ritz values. The lower
pictures result on the same problem with harmonic Ritz values. Results are shown
for different m values: m = 20 (v---), m = 25 (+ = - line), m = 30 (o — — line),
m =35 (x--- line), m = 40 (> — - line), m = 45 (O — ~ line), m = 50 (A — - line).
The solid lines give the value for no restart.

the projected system small.

When we increase the number of active processors by a factor 4, as is done in
Problem 4 (see Figure 6), we observe that again a reduction in wall clock time
can be achieved by using a well-chosen (kmin,m) combination. The number
of iterations slightly differ from those given in Figure 5, but the pictures with
the Jacobi-Davidson times look similar to those in Figure 5. If we should have
enlarged N by a factor of 4 and left the block size unchanged, we may expect
execution times as in Figure 5.

For Problem 4, the limit of 80 iterations seems to be very critical. The right-
hand plots of Figure 7 demonstrate that the number of iterations does not de-
crease monotonously when k., increases for a fixed value m as holds for the
previous problems. Moreover, it may happen that for some (kmin,m) combina-
tion, the limit of JD iterations is too strictly, while for both a smaller and larger
kmin value the desired N., eigenpairs were easily found. In the left-hand plots
only those results are included, which generate 12 eigenvalues within 80 itera-
tions. Apparently, for the standard case with m = 57 and 30 < ki, < 45, even
less iterations are required than in case of no restarts. Of course, this will lead
to a time which is far better than for the no-restart case. For the harmonic ap-
proach the behavior of the number of JD steps is less obvious, but also here the

261

FEUP - Faculdade de Engenharia da Universidade do Porto

13 85
12 X
_g . . 75 Vi
11 \ A
§ \ .§ 70 g\
= : © 65 x W
~ 10 \) .
=] X e % = b W
? LN PEE N = 60 N %
Eop oy v 55 \1{1’,\”"}. Y
of — b sof by
45
[¢] 10 20 30 40 0 10 20 30 40
kmin kmin
18 85
17 80 \---v
A
L% B
216 (S
8 270 N
8150 R« g XY
£ Yo g5 "\ AN
o Ny
. | B w60f N\ R
£ 13 AN A a 55 Nx e
ha \;:Agv ¥ LY
12 = 50 ‘B‘-\b N
11 45
10 20 30 40 0 10 20 30 40
kmm kmin

Fig. 5. The upper pictures result on problem 2 using standard Ritz values. The lower
pictures result on the same problem with harmonic Ritz values. Results are shown
for different m values: m = 20 (v}, m =25 (+ - line), m = 30 (o — — line),
m=35(x--- line), m =40 (> ~- line), m = 45 (D — — line). The solid lines give the
value for no restart.

5 6.5
N 6 x
Basr £ j
=] [e \
8 VN 255 N
] x 7] b
c 4 PR c Via
b/ 5 \
Q Q5 \ b Q N \x N .
g . g s e .
= 3.5 ":\O-_-ss‘__gfex £ 45 _§»g»;,ﬁ. ;A
D§'Q~v ”'/‘.‘P'
4 ~>
3
0 10 20 30 40 0 10 20 30 40
kmln kmin

Fig. 6. The left pictures results on problem 3 using standard Ritz values. The right
pictures result on the same problem with harmonic Ritz values. Results are shown
for different m values: m = 20 (V:2), m =25 (+ — - line), m = 30 (o — — line),
m =35 (x--- line), m =40 (> — - line), m = 45 (O — — line). The solid lines give the
value for no restart.

262

VECPAR’98 - 3rd International Meeting on Vector and Parallel Processing

28 85
@
8% A 80} »—=.-—a .y &
s I " SN L
826; . w ol 5 AAMER T/
» V.'b_y,/\f_ V. "..5-7 B AR \
£ LR - b4 ©75 N
o . \ \§ v k] v\.> f g
525 Yax v P = L v
o : . s v
E LS S A 70 :
24 N7 Rt
x
23 65
20 40 60 0 20 40 60
k K
min min
32 85
31
%3 Q —— x
Baof 7, N BOF woyTh
g Y AN ¢ W3
@297 4 yia ° = VRS B
£ AN 24 grsr 40 W™ %
028 gl v ;
o " v"/z,-'ﬁ;lf - ¢ *'\‘v,
E27 >V d 70 Toza
= \'F - ©
26 s
25 65
0 20 40 60 0 20 40 60
k"lll’1 kl'l’|'|l'|

Fig. 7. The upper pictures result on problem 4 using standard Ritz values. The lower
pictures result on the same Problem with harmonic Ritz values. Results are shown for
different m values: m = 37 (x--- line), m = 42 (> — - line), m = 47 (O — — line),
m =52 (Vv - - line), 1n = 57 (+ — - line), 7 = 62 (o — — line). The solid lines give the
value for no restart.

monotonicity is lost. Execution times become unpredictable and the conclusion
must be that it is better not to restart.

3.5 Parallel execution timing results

Table 1 shows the execution times of several parts of the Jacobi-Davidson algo-
rithm on the Cray T3E; the numbers in parentheses show the Gflop-rates. We
took :

Nev = 20» tOZsJD = 10_8; tOthD = 10_5; kmz'n = 10) m= 3O+Ne'u; itSOL =0

The number of eigenvalues found slightly depends on the number of processors
involved: about 11 for the standard and 13 for the harmonic approach within 80
iterations.

The construction of L and U is a very time-consuming part of the algorithm.
However, with a well-chosen target o ten up to twenty eigenvalues can be found
within 80 iterations. Hence, the life-time of a (L, U) pair is about 80 iterations.
On account of the cyclic reduction part of the LU factorization, a process that

263

FEUP - Faculdade de Engenharia da Universidade do Porto

Table 1. Wall clock times in seconds for the standard and harmonic Ritz approach.
N = 4096, n = 64.

p |Preprocessing] Time Time Triangular
standard JD|harmonic JD solves
32{7.90 (6.75) 64.59 88.61 25.56 (2.08)
6414.08 (13.21) 31.70 43.78 13.28 (4.02)
128]2.19 (24.78) 15.07 21.33 7.28 (7.36)
256|1.27 (42.69) 8.55 11.48 4.36 (12.29)
512[0.84 (64.65)] 5.64 7.02 3.01 (17.81)

starts on all processors, while at each step half of the active processors becomes
idle, we may not expect linear speed-up. The fact that the parallel performance
of DDCR is quite good is caused by the domain decomposition part of the LU.
For more details we refer to [2, 5].

About 40% of the execution time is spent by the computation of the LU
factorization (in Table 1 ‘Preprocessing*), which does not depend on the number
of processors. The storage demands for Problem 5 are so large that at least
the memories of 32 processors are necessary. DDCR is.an order O(Nn?) process
performed by Level 3 BLAS and it needs less communication: only sub- and
super diagonal blocks of size n-by-n. must be transfered. As a consequence, for
the construction of L and U, the communication time can be neglected also due
to the fast communication between processors on the Cray T3E. The Gflop-rates
attained for the construction of the LU are impressively high just like its parallel
speed-up.

The application of L and U, consisting of two triangular solves, is the most
expensive component of the JD process after preprocessing. It parallelizes well,
but its speed is much lower, because it is built up of Level 2 BLAS opera-
tions. The wall clock times for standard and harmonic JD are given including
the time spent on the triangular solves. Obviously, a harmonic iteration step is
more expensive than a standard step, but the overhead becomes less when more
processors are used, because the extra operations parallelize very well.

4 Conclusions

We have examined the convergence behaviour of two Jacobi-Davidson variants,
one using standard Ritz values, the other one harmonic Ritz values. For the
kind of eigenvalue problems we are interested in, arising from MagnetoHydro-
Dynamics, both methods converge very fast and parallelize pretty well. With
tolsyp = 107° and tolpyp = 107° in the acceptance criteria (10) and (11),
respectively, both variants give about the same amount of eigenpairs. The har-
monic variant is about 20% more expensive, but results into more accurate eigen-
pairs. With a well-chosen target ten up to twenty eigenvalues can be found. Even

264

VECPAR’98 - 3rd International Meeting on Vector and Parallel Processing

for very large problems, Ny = 65,536 and N; = 262, 144, we obtain more than
10 sufficient accurate eigenpairs in a few seconds.

Special attention has been paid to a restarting technique. The (kpnin,m)
parameter combination prescribes the amount of information that remains in
the system after a restart and the maximum size of the projected system. In this
paper we have demonstrated that k.,;, may not be too small. because then too
much information gets lost. On the other hand, too large ki, values lead to
many restarts and become expensive in execution time. In general, the number
of iterations decreases when m increases. It depends on the N;/p value, as we
have shown, whether restarts lead to a reduction in the wall clock time for the
Jacobi-Davidson process.

Acknowledgments

The authors wish to thank Herman te Riele for many stimulating discussions
and suggestions for improving the presentation of the paper. They gratefully
acknowledge HPaC (Delft, The Netherlands) for their technical support, and
Cray Research for a sponsored account on the Cray T3E (Eagan, MN, USA),
and the Dutch National Computing Facilities Foundation NCF for the provision
of computer time on the Cray C90 and the Cray T3E.

References

1. W. Kerner, S. Poedts, J.P. Goedbloed, G.T.A. Huysmans, B. Keegan, and
E. Schwartz. -. In P. Bachman and D.C. Robinson, editors, Proceedings of 18th
Conference on Controlled Fusion and Plasma Physics. EPS: Berlin, 1991. IV.89-
1v.92.

2. Margreet Nool and Auke van der Ploeg. A Parallel Jacobi-Davidson Method for
solving Generalized Eigenvalue Problems in linear Magnetohydrodynamics. Tech-
nical Report NM-R9733, CWI, Amsterdam, December 1997.

3. G.L.G. Sleijpen, J.G.L. Booten, D.R. Fokkema, and H.A. van der Vorst. Jacobi-
Davidson Type Methods for Generalized Eigenproblems and Polynomial Eigenprob-
lems. BIT, 36:595-633, 1996.

4. G.L.G Sleijpen and H.A. van der Vorst. A Jacobi-Davidson iteration method for
linear eigenvalue problems. SIAM J. Matriz Anal. Appl., 17(2):401-425, april 1996.

5. A. van der Ploeg. Reordering Strategies and LU-decomposition of Block Tridiagonal
Matrices for Parallel Processing. Technical Report NM-R9618, CWI, Amsterdam,
October 1996.

This article was processed using the HTEX macro package with LLNCS style

265

FEUP - Faculdade de Engenharia da Universidade do Porto

266

VECPAR’98 - 3rd International Meeting on Vector and Parallel Processing

A Level 3 Algorithm for the
Symmetric Eigenproblem

Dieter F. Kvasnicka!, Wilfried N. Gansterer?, and
Christoph W. Ueberhuber®

! Institute for Technical Electrochemistry,
University of Technology, Vienna
dieter@titania.tuwien.ac.at

2 Institute for Applied and Numerical Mathematics,
University of Technology, Vienna
ganst@aurora.tuwien.ac.at
® Institute for Applied and Numerical Mathematics,
University of Technology, Vienna
christof@uranus.tuwien.ac.at

Abstract. This paper shows how the symmetric eigenproblem, which
is the computationally most demanding part of numerous scientific and
industrial applications, can be solved much more efficiently than by using
algorithms currently implemented in LAPACK routines.

The main techniques used in the algorithm presented in this paper are
(1) sophisticated blocking in the tridiagonalization, which leads to a two-
sweep algorithm; and (ii) the computation of the eigenvectors of a band
matrix instead of a tridiagonal matrix.

This new algorithm improves the locality of data references and leads to
a significant improvement in the floating-point. performance of symmetric
eigensolvers on modern computer systems. Speedup factors of up to four
(depending on the computer architecture and the matrix size) have been
observed. :

Keywords: Numerical Linear Algebra, Symmetric Eigenproblem, Tridiagonalization,
Performance Oriented Numerical Algorithm, Blocked Algorithm

1 Introduction

Reducing a dense symmetric matrix 4 to tridiagonal form 7" is an important
preprocessing step in the solution of the symmetric eigenproblem. LAPACK {An-
derson etal. {1]) provides a blocked tridiagonalization routine whose memory
reference patterns are not optimal on modern computer architectures. In this
LAPACK routine a significant part of the computation is performed by calls to
Level 2 BLAS routines. Unfortunately, Level 2 BLAS do not have a ratio of
floating-point operations to data movement that is high enough to enable effi-
cient reuse of data that reside in cache or local memory (see Table 1). Thus,

This work was supported by the Austrian Science Foundation (FWF).

267

FEUP - Faculdade de Engenharia da Universidade do Porto

software construction based on calls to Level 2 routines 1s not well suited to
computers with a memory hierarchy and multiprocessor machines.

Table 1. Ratio of floating-point operations to data movement for three closely related
operations from the Level 1, 2, and 3 BLas (Dongarra et al. [6)

Memory Flops per
BLas Routine Accesses Flops Memory Access
Level 1 daxpy 3n n 2/3
Level 2 dgemv n? 2n? 2
Level 3 dgemm 4n? n® n/2

Bischof et al. [4,5] recently developed a general framework for reducing the
bandwidth of symmetric matrices, which improves data locality and allows for
the use of Level 3 BLAS instead of Level 2 BLas.

In this paper we introduce an important modification to this framework in
case eigenvectors have to be computed, too: Accumulating the transformation
information for the eigenvectors incurs an overhead which can outweigh the ben-
efits of a multisweep reduction (as remarked in Bischof et al. [4,5]). Therefore we
compute the required eigenvectors directly from the intermediate band matrix.
Analyses and experimental results show that our approach to improving memory
access patterns is superior to established algorithms in many cases.

2 Eigensolver with Improved Memory Access

A real symmetric n x n matrix 4 can be factorized as
A=VTBV =QTTQ = 2T Az (1)

where V', Q, and Z are orthogonal matrices. B is a symmetric band matrix with
band width 2b + 1, T is a symmetric tridiagonal matrix, and A is a diagonal
matrix whose diagonal elements are the eigenvalues of the (similar) matrices A,
B and T The column vectors of Z are the eigenvectors of 4.

LAPACK reduces a given matrix A to tridiagonal form 7" by applying House-
holder similarity transformations. A bisection algorithm? is used to compute
selected eigenvalues of 7', which are also eigenvalues of A. The eigenvectors of T
are found by inverse iteration on 7. These eigenvectors have to be transformed
into the eigenvectors of A using the transformation matrix Q.

The new method proposed does not compute the tridiagonal matrix T from
A directly, but derives a band matrix B as an intermediate result. This band
reduction can be organized with good data locality, which is critical for high
performance on modern computer architectures. Using a block size b in the first

Y 1f all eigenvalues are required. LAPACK also provides other algorithms.

268

VECPAR'98 - 3rd International Meeting on Vector and Parallel Processing

reduction sweep results in a banded matrix B with a semibandwidth of at least
b. This relationship leads to a tradeoff:

— If smaller values of b are chosen, then a larger number of elements of A
are eliminated. This decrease in the number of non-zero elements leads to a
smaller amount of data to be processed in later steps.

— If larger values of b are chosen, then better performance improvements are
obtained in the first reduction sweep.

Using appropriate values of b the two-sweep tridiagonal reduction achieves
speedups of up to ten as compared with the LAPACK tridiagonal reduction (see
Gansterer, Kvasnicka [7.8]).

The eigenvectors can be computed by inverse iteration either from A, B, or
T. In numerical experiments inverse iteration on B turned out to be the most
effective. The eigenvectors of 4 have to be computed from the eigenvectors of B
using the orthogonal transformation matrix V.

The new algorithm includes two special cases:

1. fVV = @ then B =T, and the inverse iteration is performed on the tridiag-
onal matrix T'. This variant coincides with the LAPACK algorithm.

2. 'V =1 then B = A. and the inverse iteration is perfornied on the original
matrix A. This variant is to be preferred if only a few eigenvectors have to
be computed and the corresponding eigenvalues are known.

3 The New Level 3 Eigensolver

The blocked LAPACK approach puts the main emphasis on accumulating several
elimination steps. b rank-2 updates (each of them a Level 2 BLAS operation) are
aggregated to form one rank-2b update and hence one Level 3 BLAS operation.
However. this approach does not take into account memory access patterns in
the updating process. We tried to introduce blocking in a much stricter sense,
namely by using blocked access patterns.

Partitioning matrix 4 into block columns, and further partitioning each
block column into quadratic submatrices makes it possible to process the block-
coJumns and their submatrices the same way that the single columns and their
elements are processed in the original unblocked method: all blocks® below the
subdiagonal block are eliminated, which leaves a block tridiagonal matrix. i.e., a
band matrix (when considered elementwise). At first sight this matrix has band-
width 4b — 1. Further examination shows that the first elimination sweep can be
organized such that the subdiagonal blocks in the block tridiagonal matrix are
of upper triangular form. Hence the band width of B can be reduced to 2b -+ 1.

There are two characteristics which distinguish the newly developed Level 3
algorithm from standard algorithms (see Fig.1):

? Replace block by element (or elementwise) to get the original. unblocked, algorithn.

269

FEUP - Faculdade de Engenharia da Universidade do Porto

Two-sweep tridiagonalization: The first sweep reduces the matrix A to a
band matrix B. The second sweep reduces B to a tridiagonal matrix 7.
No fill-in occurs in the first reduction sweep. In the second sweep, however,
additional operations are needed to remove fill-in.

Inverse iteration on the band matrix: Calculating the eigenvectors of B
avoids the large overhead entailed by the backtransformation of the eigen-
vectors of T'. On the other hand, the overhead caused by inverse iteration
on B does not outweigh the benefits of this approach.

|

Eigenvalues

Eigenvectors =———— Eigenvectors
of A of B

Fig. 1. Basic concept of the new eigensolver

4 Implementation Details

The resulting algorithm has five steps.

1. Reduce the matrix 4 to the band matrix B.
(a) Compute the transformation

VAV = (1 —wul) (] = wud)AL - wpul) (1 =)

for a properly chosen subblock of 4. The Householder vectors for the
transformation of the columns of this subblock do not depend on each
other. This independence enables a new way of blocking in Step Ic.

(b) Collect the Householder vectors as column vectors in an n X b matrix ¥
and compute the n x b matrix W such that the transformation matrix 1
is represented as (I — 1'Y'T). Matrix Y can be stored in those parts of
A which have just been eliminated. Matrix W requires separate storage
of order O(n?): therefore it is overwritten and has to be computed again
m the backtransformation step.

270

VECPAR’98 - 3rd International Meeting on Vector and Parallel Processing

(c) Perform a rank-2b update using the update matrix (I — Wy'7T).
{d) Iterate Steps la to lc over the entire matrix 4.

2. Reduce the matrix B to the tridiagonal matrix 7. Fill-in increases the total
number of operations needed for the tridiagonalization.

3. Compute the desired eigenvalues of the tridiagonal matrix T'.

4. Compute the corresponding eigenvectors of B by inverse iteration. The com-
putation of the eigenvectors of B requires a higher amount of operations
than the computation of the eigenvectors of T ’

5. Transform the eigenvectors of B to the eigenvectors of the input matrix 4.
The update matrices 1#" have to be computed anew. The transformation
matrix V¥, which occurs in (1). is not computed explicitly.

Variations of the representation of V; are (see Bischof [3])

- Vi = (I + WYT). The matrix ¥ holds a set of Householder vectors whereas
the matrix W is computed explicitly. This version is actually used in the
current implementation.

— Vi = (I — GGT) (see Schreiber, Parlett [9]). This version needs higher effort
for computing G as well as for coding. However, memory for storing W and
the redundant effort to compute W twice is saved.

= Vi = (I = YUYT) (see Schreiber, Van Loan [10]) with a b x b triangular
matrix /. The storage requirement for [7 is nearly negligible.

The new algorithm and its variants make it possible to use Leve] 3 BLas
in all computations involving the original matrix, in contrast to the LAPACK
routine dsyevx. This routine performs 50 % of the operations needed for the
tridiagonalization in Level 2 BLas.

5 Complexity

The total execution time T of our algorithm consists of five parts:

T] ~ ¢1(b)n3 for reducing the symmetric matrix 4 to a band matrix B,
Ty~ c-»(b)n for reducing the band matrix B to a tridiagonal matrix 7.
T3 ~ c3(k)n® for computing & eigenvalues of T,
Ty ~ c4(b)kd*n® for computing the corresponding k eigenvectors of B. and
Ts ~ cskn® for transforming the eigenvectors of B into the eigenvectors of 4.

The parameters ¢;. c2. and ¢4 depend on the semibandwidth b. The parameter
¢; decreases in b, whereas c¢s and ¢4 increase in b due to an increasing number
of operations to be performed. The parameter cs depends on the number of
computed eigenvectors k; whereas cs is independent of the problem size.

The band reduction step is the only part of the algorithm requiring an O(n3)
effort. Thus, a large semibandwidth b of B seems to be desirable. However, b
should be chosen appropriately not only to speed up the band reduction (T3),
but also to make the tridiagonalization (75) and the eigenvector computation
(T4) as efficient as possible.

271

FEUP - Faculdade de Engenharia da Universidade do Porto

For example. on an SGI Power Challenge the calculation of & = 200 eigenval-
ues and eigenvectors of a symmetric 2000 x 2000 matrix requires a total execution
time T = 87s. T is 555, i.e.. 63 % of the total time. Ty is 16s, i.e., 18 % of T..
The other steps of the algorithm require an insignificant part of the execution
time.

6 Results

A first implementation of our algorithm uses routines from the symmetric band
reduction toolbox (SBR: see Bischof et al. [2.4.5]). EISPACK routines (Smith
etal. [11]), LAPACK routines (Anderson et al. [1)). and some of our own routines.

In numerical experiments we compare the well established LAPACK routine
dsyevx with the new algorithm. On an SGI Power Challenge (with an R8000
processor running with 90 MHz), speedup factors of up to 4 were observed (see
Table 2 and Fig. 5).

Table 2. Execution times (in seconds) on an SGI Power Challenge. k = n/10 of the n
eigenvalues and eigenvectors were computed

Larack New

n k b dsyevx Method Speedup

500 50 6 1.5% 2.1s 0.7
1000 | 100 G 16.6s 12.6s 1.3
1500 150 6 T44ds 39.2s 1.9
2000 200 10 239.2s 89.7s 2.7
3000 300 12 945.5s 286.4s 3.3
4000 400 12 2432.4 s 660.5 s 3.7

Fig. 2 shows the normalized computing time T(n)/n®. The significant speed-
up of the new algorithm when applied to large problems is striking. This speedup
has nothing to do with complexity. which is nearly identical for both algorithms
(see Fig. 3). The reason for the good performance of the new algorithm is its
significantly improved utilization of the computer's potential peak performance
(see Fig. 4). The deteriorating efficiency of the LAPACK routine (due to cache
effects) causes the O(n?) behavior of its computation time between n = 500 and
n = 2000 (see Fig. 2).

The new algorithm shows significant speedups compared to existing algo-
rithms for large matrices (n > 1500) and a small subset of eigenvalues and
eigenvectors (k = n/10) on all computers at our disposal, including worksta-
tions of DEC, HP, IBM. and SGI.

Choosing the block size b. Experiments show that the optimum block size b,
which equals the smallest possible band width. increases slightly with larger

272

VECPAR’98 - 3rd International Meeting on Vector and Parallel Processing

40

30

ns 20

10

1 2*]

flop 1

100 %
80 %
60 %
40%
20%

0%

Normalized Computing Time

Order n of the matrix

Fig. 4. Floating-point performance {(MFlop/s) and efficiency (%)

273

I I | | | I I
LAPACK/ dsyevx —
- new algorithm e _
]] |] !]
0 1000 2000 3000 4000
Order n of the matrix
Fig.2. Normalized computing time T(n)/n® in nanoseconds
Normalized Complexity
i] I] 1 | I
\ -
- LAPACK/ dsyevx —
new algorithm e
l |] |] | L
0 1000 2000 3000 4000
Order n of the matrix
Fig. 3. Normalized number op(n)/n® of floating-point operations
Floating-Point Performance Mflop/s
I] |] I I | =
LAPACK/ dsyevx -4 300
B new algorithm e
B ~ 200
K ~ 100
1 } |] |]]
0 1000 2000 3000 4000

FEUP - Faculdade de Engenharia da Universidade do Porto

Speedup
5 1 T T T

0 1000 2000 3000

Number k of eigenvalues and eigenvectors

Fig.5. Speedup of the new algorithm as compared with the LAPACK routine dsyevx.
Performance improvements are all the better if k is only a small percentage of the
n = 3000 eigenvalues and eigenvectors

matrix sizes (see Table 2). A matrix of order 500 requires a b of only 4 or 6
for optimum performance. depending on the architecture (and the size of cache
lines). Band widths of 12 or 16 are optimum on most architectures when the
matrix order is larger than 2000. A hierarchically blocked version which is cur-
rently under development allows increasing the block size without increasing the
band width and therefore leads to even higher performance.

7 Conclusion

We presented an algorithm for the computation of selected eigenvalues and eigen-
vectors of symmetric matrices which is significantly faster than existing algo-
rithms. This speedup is achieved by improved blocking in the tridiagonalization
process, which significantly improves data locality.

LAPACK algorithms for the symmetric eigenproblem spend up to 80 % of their
execution time in Level 2 BLAs, which do not perform well on cache-based and
multiprocessor computers. In our algorithm all performance relevant steps make
use of Level 3 BLAS.

The price that has to be paid for the improved performance in the tridiagonal-
ization process is that the eigenvectors cannot be computed from the tridiagonal
matrix because of prohibitive overhead in the backtransformation. They have to
be computed from the intermediate band matrix.

When choosing the block size, a compromise has to be made: Larger block
sizes improve the performance of the band reduction. Smaller block sizes have
to be used to reduce the band width and, therefore, to speed up the inverse iter-
ation on the band matrix. This property makes the new algorithm particularly
attractive (on most ar‘chitectures) if not all eigenvectors are required.

274

VECPAR’98 - 3rd International Meeting on Vector and Parallel Processing

If the gap between processor speed and memory bandwidth further increases,

our algorithm will be highly competitive also for solving problems where all

eigenvectors are required.

Future Development. Routines dominated by Level 3 BLAS operations, like the
eigensolver presented in this paper, have the potential of speeding up almost
linearly on parallel machines. That is why we are currently developing a parallel

ve

rsion. Another promising possibility of development is the use of hierarchical

blocking (see Ueberhuber [12]).

References

~1

10.

11.

. E. Anderson etal.. LaPACK Users' Guide. 2nd ed.. SIAM Press, Philadelphia,
1995.

. C.H. Bischof, B. Lang. X. Sun, Parallel Tridiagonalization through Two-Step Band

Reduction, Proceedings of the Scalable High-Performance Computing Conference,

IEEE Press, Washington, D. C., 1994, pp. 23-27.

C.H. Bischof, A Summary of Block Schemes for Reducing a General Matrix to

Hessenberg Form, Technical Report ANL/MCS-TM-175, Argonne National Lab-

oratory, 1993.

. C.H. Bischof, B. Lang. X. Sun. A Framework for Symmetric Band Reduction.

ACM Trans. Math. Software. Argonne Preprint ANL/MCS-P586-0496 (1996).

C. H. Bischof. B. Lang. X. Sun. The SBR Toolbox - Software for Successive Band

Reduction, ACM Trans. Math. Software, Argonne Preprint ANL/MCS-P587-0496

(199G).

. J.J. Dongarra etal.. Solving Linear Systems on Vector and Shared Memory Com-
puters, SIAM Press. Philadelphia, 1991.

. W. Gansterer, D. Kvasnicka, High-Performance Computing in Material Sciences.
The Standard Eigenproblem ~ Concepts. Technical Report 3/97, AURORA-5,
Technical University of Vienna, 1997.

. W. Gansterer, D. Kvasnicka, High-Performance Computing in Material Sciences.
The Standard Eigenproblem - Experiments, Technical Report 5/97, AURORA-5,
Technical University of Vienna, 1997,

. R. Schreiber. B. Parlett, Block Reflectors: Theory and Computation, SIAM J.

Numer. Anal. 25 (198%), pp. 189-205.

R. Schreiber. C. Van Loan. A Storage-Efficient WY Representation for Products of

Householder Transformations, SIAM J. Sci. Stat. Comput. 10-1 (1989), pp. 53-57.

B.T. Smith etal.. Matrix Eigensvstem Routines - E1sPACK Guide, Lecture Notes

in Computer Science. Vol. 6. Springer-Verlag. Berlin Heidelberg New York Tokvo.

1976.

. C.W. Ueberhuber., Numerical Computation. Springer-Verlag, Berlin Heidelberg
New York Tokyo, 1997.

275

FEUP - Faculdade de Engenharia da Universidade do Porto

276

VECPAR’98 - 3rd International Meeting on Vector and Parallel Processing

Synchronous and asynchronous parallel
algorithms
with overlap for almost linear systems

Josep Arnal, Violeta Migallén, and José Penadés

Departamento de Ciencia de la Computacién e Inteligencia Artificial,
Universidad de Alicante,
E-03071 Alicante, Spain
{arnal, violeta, jpenades}0dtic.ua.es

Abstract. Parallel algorithms for solving almost linear systems are stud-
ied. A non-stationary parallel algorithm based on the multisplitting tech-
nique and its extension to an asynchronous model are considered. Con-
vergence properties of these methods are studied for M-matrices and
H-matrices. We implemented these algorithms on two distributed mem-
ory multiprocessors, where we studied their performance in relation to
overlapping of the splittings at each iteration.

1 Introduction

We are interested in the parallel solution of almost linear systems of the form
Az + &(z) = b, (1)

where A = (a;;) is a real n x n matrix, £ and b are n-vectors and & : R* — R"
is a nonlinear diagonal mapping (i.e., the ith component &; of @ is a function
only of z;).

These systems appear in practice from the discretization of differential equa-
tions, which arise in many fields of applications such as trajectory calculation or
the study of oscillatory systems; see e.g., [3], [5] for some examples.

Considering that system (1) has in fact. a unique solution, White [18] intro-
duced the parallel nonlinear Gauss-Seidel algorithm, based on both the classical
nonlinear Gauss-Seidel method (see [13]) and the multisplitting technique (see
(12]). Until then, the multisplitting technique had only been used for linear
problems. Recently, in the context of relaxed methods, Bai [1] has presented a
class of algorithms, called parallel nonlinear AOR methods, for solving system
(1). These methods are a generalization of the parallel nonlinear Gauss-Seidel
algorithm [18].

In order to get a good performance of all processors and a good load balance
among processors, in this paper we extend the idea of the non-stationary meth-
ods to the problem of solving the almost linear system (1). This technique was
introduced in [6] for solving linear systems, (see also [8], [11]). In a formal way,

277

FEUP - Faculdade de Engenharia da Universidade do Porto

let us consider a collection of splittings A = (D - Legm)=Uekm, £=1,2,...,

k=1,2,....a,m=1,2,...,9(¢,k), such that D = diag(A) is nonsingular and
L¢k,m are strictly lower triangular matrices. Note that matrices Ut k.m are not

generally upper triangular. Let E) be nonnegative diagonal matrices such that
[2 4

> E.=1
k=1
Let us define r; : IR - IR, 1 <1< n, such that
ri(t) = aut + di(t), t€R, (2)

and suppose that there exists the inverse function of each ri, denoted by r77%.
Let us consider the operators Prim : R" =5 IR” such that each of them
maps z into y in the following way

y,-:wy,-+(1—w):c,-,1_<_i§n,wélR,w;é0,
and §; = T';»_I(Z,'), with (3)
2= pLlekm+ (1= p)Lekmz +Upkmz +b, p€R.

With this notation, the following algorithm describes a non-stationary par-
allel nonlinear method to solve system (1). This algorithm is based on the AOR-
type methods. It is assumed that processors update their local approximation
as many times as the non-stationary parameters ¢(¢, k) indicate.

Algorithm 1 (NON-STATIONARY PARALLEL NONLINEAR ALG.).
Given the initial vector z(°), and a sequence of numbers of local iterations
g6 k). £=1,2,..., k=12 ... a

For £=1,2,..., until convergence

In processor k, k=1 to o
k0 = p(e-1)

For m =1 to ¢(¢, k)
gbkm — Py m(zl,k,m—l)

o
20 = ZE;;J:"""’“”‘).
k=1

We note that Algorithm 1 extends the nonlinear algorithms introduced in (1]
and [18]. Moreover, Algorithm 1 reduces to Algorithm 2 in [8], when P(z) =0
and forall £=1,2,... m=1,2,.. v q(€&, k), Le k,m = Lg and Upkom = U, k=
1,2,..., a. Here, the formulation of Algorithm 1 allows us to use different split-
tings not only in each processor but at each global iteration ¢ and/or at each
local iteration m. Furthermore, the overlap is allowed as well.

In this algorithm all processors complete their local iterations before updating
the global approximation z(9). Thus, this algorithm is synchronous.

To construct an asynchronous version of Algorithm 1 we consider an iterative
scheme on IR®". More precisely, we consider that, at the £th iteration, processor
k performs the calculations corresponding to its q(L, k) splittings, saving the

278

VECPAR’98 - 3rd International Meeting on Vector and Parallel Processing

update vector in z}_,l), k=1,2,...,a. Moreover, at each step, processors make
use of the most recent vectors computed by the other processors, which are
previously weighted with the matrices Ex, k=1,2,...,a.

In a formal way, let us define the sets J; C {1,2,...,e}, £ =1,2,..., as
k € J¢ if the kth part of the iteration vector is computed at the fth step.
The superscripts 7(£, k) denote the iteration number in which the processor k
computed the vector used at the beginning of the £th iteration.

As it is customary in the description and analysis of asynchronous algorithms
(see e.g., [2], [4]), we always assume that the superscripts r(¢, k) and the sets J;
satisfy the following conditions

r(ky<£€forallk=1,2,...,a, £=1,2,.... _ (4)
lim »({,k)=o00 forallk=1,2,...,a. (5)
{00

The set {¢ | k € J;} is unbounded for all k =1,2,...,a. (6)

Let us consider the operators Py x m used in Algorithm 1. With this notation,
the asynchronous counterpart of that algorithm corresponds to the following
algorithm.

Algorithm 2 (AsyNC. NON-STATIONARY PARALLEL NONLINEAR ALG.).

Given the initial vectors r,{,o) , k=1,2,...,a, and a sequence of numbers of local
iterations ¢(£,k), £=1,2,..., k=1,2,...,a
For £=1,2,..., until convergence
z{f~") if k¢ J
z(l) = 3 e . (7)
k Pg,k'q(gyk) e Prgo Pogy Z E'j:cj 7 if ke Je.
i=1

Note that Algorithm 2 computes iterate vectors of size an, while it only uses
n-vectors to perform the updates. For that reason, from the experimental point
of view, we can consider that the sequence of iterate vectors is made up of that

3

n-vectors, that is, Z Ej:cy(f’j)), £=1,2,.... Another consequence of what has
Jj=1
been mentioned above is that only components of the vectors xff) corresponding
to nonzero diagonal entries of the matrix Ex need to be computed. Then, the
local storage is of order n and not an.
In order to rewrite the asynchronous iteration (7) more clearly, we define the

operators G® = (G, ..., G{P)), with G{¥ : R*™ — R” such that, if § € R*"

6§ = Pekgery - Perz- Pexn(Q), k=1,2,...,0q,

where

Q=[E..., Ek, ..., Es) € R* ", (8)

279

FEUP - Faculdade de Engenharia da Universidade do Porto

Then, iteration (7) can be rewritten as the following iteration

Jo_ [z if k ¢ J, "
G () ey,

In Section 2, we study the convergence properties of the above algorithms
when the matrix in question is either M-matrix or -matrix. The last section
contains computational results which illustrate the behavior of these algorithms
on two distributed multiprocessors. In the rest of this section we introduce some
notation, definitions and preliminary results.

We say that a vector z € IR” is nonnegative (positive), denoted z > 0 (z > 0),
if all its entries are nonnegative (positive). Similarly, if z,y € R*, ¢ >y(z>y)
means that 2 —y > 0 (z —y > 0). Given a vector z € R", |z] denotes the vector
whose components are the absolute values of the corresponding components of
z. These definitions carry over immediately to matrices.

A nonsingular matrix A is said to be an M-matrix if it has non-positive
off-diagonal entries and it is monotone, i.e., A~! 2> O; see e.g., Berman and
Plemmons [3] or Varga [17]. Given a matrix 4 = (aij) € R™ ", its comparison
matrix is defined by (A) = (ay;), i = as], a;j = ~laij|, i # j. Ais said to
be an H-matrix if (A) is a nonsingular M-matrix.

Lemma 1. Let HV H®) HO e g sequence of nonnegative matrices
in R™ ™. If there exists a real number 0 < 8 <1, and a vector v > 0 in R",
such that

HYy < 6w, £=1,2,...,
then p(K¢) < 6° < 1, where K, = HOq((-1) - HW and therefore £1i1n L, =

oo

0.
Proof. The proof of this lemma can be found, e.g., in [15].
Lemma 2. Let A = (aij) € R™ " be an H-matriz and let & : R” — R” be a
continuous and diagonal mapping. If sign(ai;) (t — s) (B; (1) — D (s)) > 0, i =
1,2,...,n, for all t,s € R, then the almost linear system (1) has a unique

solution.

Proof. 1t is essentially the proof of [1, Lemma 2].

2 Convergence

In order to analyze the convergence of Algorithm 1 we rewrite it as the following
iteration scheme

o4
20 =" Bathat®) p=19, (10)
k=1

280

VECPAR’98 - 3rd International Meeting on Vector and Parallel Processing

- -

where 2¢%:9(4k) is computed according to the iteration

20k0 = p(e-1)

For m =1 to q(¢, k)
2ifm = wafE (1 w)af* ™ 1<i<n, weR, w#0 (11)

and £°%'™ is determined by

Y P (12)

where 7; is defined in (2) and
R = Lk m@ ™ 4 (1= @) Lo gz ™ 4 Upp ™1+ b, g€ R.

The following theorem ensures the existence of a unique solution of system
(1) and shows the convergence of scheme (10) {or Algorithm 1) when A is an
H-matrixand 0 < p < w < W‘EZT-‘WU’ with w # 0, where D = diag(A) and
A = D - B. Note that, from [17, Theorem 3.10], | D| is a nonsingular matrix and
p(IDI71B]) < 1.

Theorem 1. Let A = D — Lypm — Ugkom = D—-B, £ = 1,2,..., k =
1,2,...,0, m=1,2,...,q(£, k), be an H-matriz, where D = diag(A) and L¢ i m
are strictly lower triangular matrices. Assume that |B| =\|L¢ k,m|+ |Ut.k.m|. Let
@ be a continuous and diagonal mapping satisfying

sign(aii) t—s)(@;(t)—é;(s))zo, i=1,2,...,n, foralt,seR. (13)

IFo<u<w< with w # 0, where p = p(|D|7|B|), and g(£,k) > 1, £ =

1+p’
1,2,..., k= 1,2,...,a, then the iteration (10) is well-defined and converges
to the umque solutwn of the almost linear system (1), for every initial vector
RY‘I

Proof. Since @;, 1 £ ¢ < n, are continuous mappings satisfying (13), it follows
that each 7; given in (2) is one-to-one and maps IR onto IR. Hence, each r; has
an inverse function defined in all of IR and thus iteration (10) is well-defined.

On the other hand, by Lemma 2, system (1) has a unique solution, denoted
a*. Let ¢(9) = z(8) —2* be the error vector at the £th iteration of scheme (10).

[e3
Then;, [0 < Z E; lr""’q(f’k) -~z

k=1

as in the proof of [13, Theorem 13.13], it is easy to prove that |a;;||y — 7] <
[*i(y) — rs(g)], for all y,§ € IR, where r; is defined in (2). Therefore, we obtain
that |a;;| Irfl(z) - r,.'l(:?)[< |z — 2|, for all z, Z € R. Then, from (12) and using
the fact that «F = r:l([uLt'k,m:c*+(l = 1) Le g ma* + Up g ma* +b);), we obtain,
foreachi=1,2,...,n

= loa [r7 (64 ™) = 171 (2H) | <
- I[ﬂLLk " (mlk m _ 1:.) + (1 _N) Lt,k.m (l,t',k,m—l _ l.t)

+U£,k,m (Lkm=1 _ x‘)]i|'

(13) and reasoning in a similar way

Jkm &
%)

281

FEUP - Faculdade de Engenharia da Universidade do Porto

Since these inequalities are true for all 5 = 1,2,...,n, we can write

|Dl lz'ﬁ,k,m - l", S IﬂLi,k,m (jl,k,m _ :L“) + (1 _ u) Lt,k,m (zt,k,m-l _ .’L“)
+Ut‘k,m (:L,E,k,m-l - za),
Since (|D]—p|Lexm])~! > O, making use of (11) we obtain, after some algebraic
manipulations, that

[25™ — 2| < (ID] = 1| Ly pom]) " ((w~m) Lok ml +w Uk ml

L= wlID) o™ _ 2t m=12,.. (e k).

Therefore, |z8%.9(0k) _ 2=
Hego- Hepy, and

<H(l) x“‘”—x',whereH(”:Hlk k) ..
= k k,q(k)

Hepem = (1D = p1Legm) ™" (@ = 1) L] + @ |Uge] + 1 w[1Dl). (14)

o
Then Ie‘([)l S H(t)lg(l‘l)l S e S H(l) .. .H(l)lg(o)l’ where H(l) = ZEkHIEC)
k

=1
Since A is an H-matrix, following the proof of (8, Theorem 4.1] we conclude that
for0<pu<wc« %, with w # 0, there exist real constants 0 <O <1 and
a positive vector v such that H,Et)v < Okv. Hence, setting 6 = ,max 0y, it
o =) Qa

obtains H©v < gv. Then, from Lemma 1 the product) H(E=1) .. g(1) tends
to the null matrix as ¢ — oc and thus elim @ = 0. Therefore, the proof is done.
- 00

Next we show the convergence of the asynchronous Algorithm 2 under similar
hypotheses as in the synchronous case.

Theorem 2. Let A = D — Lekn — Ugkorn = D = B, t=12... &% =
L,2,...,a, m=1,2,. ., q(€, k), be an H-matriz, where D = diag(A) and Ly x n
are strictly lower triangular matrices. Assume that 1Bl = [Lem| + |Us i m. Let
& be a continuous and diagonal mapping satisfying forallt,se R

sign(a,'i) (t - s} (P (t) - & (S)) >0, i=1,2,.. .

Assume further that the sequence r(£, k) and the sets J,, k = 1,2....,a,1 =
1,2...., satisfy conditions (4-6). If 0 <pu<fuw< Ti_p’ with w # 0, where p =
p(IDIY|B]), and ¢(¢, k)>1,0=1,2,..., k=1,2,.. ., @, then the asynchronous
Algorithm 2 is well-defined and converges to * = (z*T, ...,)T € R*", where
z* is the unique solution of the almost linear system (1), for all initial vectors

xi.o)ElR", k=1,2,... 0.

Proof. By Lemma 2, the existence and uniqueness of a solution of system (1)
is guaranteed. From the proof of Theorem 1 it follows that Algorithm 2 is well-
defined. Moreover, there exists a positive vector v and a constant, 0 <6 < 1such
that '

H% < 6y, k=1,2,...,a,¢=1,2 (15)

282

VECPAR’98 - 3rd International Meeting on Vector and Parallel Processing

Let us consider o = (vT, DT € RO™, As G,(f)(i'*) = z*, then #* is a fixed
point of G1¥), [= 1,2,.... Following the proof of Theorem 1 it easy to prove
that

G (@) - G2(5) < BPQI5 - 3, for all 3,7 € R,

where @ is defined in (8). Then,
60 - GO(E)| < TW]g - 3|, for all g, 2 € R,

where

HQ
T(l) - € [Renxan (16)
HOQ
From equations (15) and (16) it follows that
T <05, £=1,2,.... (17)

Due to the uniformity assumption (17), we can apply [2, Theorem 1] to our
case in which the operators change with the iteration superscript. Then, the
convergence is shown.

Note that, in the particular case in which A is an M -matrix, condition (13)
is reduced to state that the mapping & is nondecreasing. Moreover, condition
IBl = [Ltk.ml + |Uek,m| is equivalent to assume that Legm and Up g m are
nonnegative matrices.

3 Numerical experiments

We have implemented the above algorithms on two distributed multiprocessors.
The first platform is an IBM RS/6000 SP with 8§ nodes. These nodes are 120
MHz Power2 Super Chip (Thin SC) and they are connected through a high
performance switch with latency time of 40 microseconds and a bandwidth of
30 to 35 Mbytes per second. The second platform is an ethernet network of five
120 MHz Pentiums. The peak performance of this network is 100 Mbytes per
second with a bandwidth around 6.5 Mbytes per second. In order to manage the
parallel environment we have used the PVMe library of parallel routines for the
IBM RS/6000 SP and the PVM library for the cluster of Pentiums [9], [10].

In order to illustrate the behavior of the above algorithms, we have considered
the following semilinear elliptic partial differential equation (see e.g., [7], [16],
(18]

~(Kl'ug)z — (K2uy)y = —ge* (2,y) € 2, 18
u=at+y (z,y) € 00, 1e)

where
K'=EKYz,y) = 1422 + ¢*,
K? = K%(z, y)=1+e" +eY,
9=9(2,9) =22+ 322+ +¢* + (1+ y)ey)e'rg'yz,
2=(0,1) x (0,1).

283

FEUP - Faculdade de Engenharia da Universidade do Porto

It is well known that this problem has the unique solution u(z,y) = 2? 4+ ¢,
To solve equation (18) using the finite difference method, we consider a grid
1

in 2 of d* nodes equally spaced by h = Az = Ay = 737+ This discretization

yields an almost linear system Az + @(z) = b, where A is a block tridiagonal
symmetric matrix 4 = (D;_I,Y},D;)le, where T; are tridiagonal matrices of
sizedx d, i=1,2,...,d, and D; are d x d diagonal matrices, i = 1...,d~1;
see e.g., [7].

Let S ={1,2,...,n} and let ng, &k = 1,2,...,a, be positive integers which
add n. Consider Sk m, k=1,2,.. e, m=1,2,... ¢q(f k), subsets of S defined

as

Skm = {SkmsShm+ 1. 82) (19)
where
5k m = max{l,14 an —bd - (m - 1)d}, and
., i<k (20)
Sk m :min{n,Zn,-+bd+(m-—1)d},)
i<k

a
with b being a nonnegative integer. Note S = USk,'m m=1,2,...,q(¢k).

k=1
Let us further consider multisplittings of the form

_ a _ =)= J<i, 1, €S m
o Lok, Utk Eidicr, where Lekm=Lim = { 0 otherwise,
(21)

and Ug g m = Ugm, forall £=1,2,.... Thenxn nonnegative diagonal matrices
Ei. 1 <k < a, are defined such that their sth diagonal entry (Ej);; is calculated
as follows

1 ifi€Syandi €Sy, j#k,
(Ex)is=<¢ 05 ifie SkaNSk_y10ri €SN Sk+1,1,
. 0 ifi¢Sk.

Experiments were performed with almost linear systems of different orders.
The conclusions were similar for all tested problems. Here we discuss the results
obtained with d = 64 and d = 200, that originate almost linear systems of sizes
4096 and 40000 respectively. In this paper all the times obtained for the parallel
algorithms correspond to REAL times; moreover, they are reported in seconds.
The initial vector used was z(%) = (1,...,1)T. The stopping criterion used for the
almost linear system of size 4096 was [z v}l < h?, where I]l2 is the Euclidean
norm and v is the vector which entries are the values of the exact solution of
(18) on the nodes (th,jh), i,5=1,...,d. However, for the almost linear system
of size 40000 the convergence criterion was changed to ||z(¢) — 2(=1))), < 10-5.

On the other hand, to solve the one-dimensional nonlinear equation (3) the
Newton method is used. The best results were obtained performing only one
iteration of this method.

Table 1 shows some of these results for the almost linear system of size
4096, setting w = p = 1 in Algorithm 1 and using different multisplittings

284

VECPAR'’98 - 3rd International Meeting on Vector and Parallel Processing

depending on the number of processors used (@) and on the choice of the values
ng, 1 < k < a. Moreover, in this table, the case in which the splittings do
not change with the local iterations (ie, Lkm = Ly, m = 1,2,...,q(Lk))
is analyzed together with the case in which the splittings change according to
(19) and (21). No overlapping is considered, that is, the integer b in (20) is
taken as zero. It is observed that when the splittings change, the number of
global iterations decreases. Therefore, the communications among processors
are reduced and less execution time is observed.

Without varying the sphittings[[Varying the splittings
o [q(€, k)] Tt. Time Time It.] Time | Time
[T Cluster SP2 Cluster| SP2 |
2 1,1 4292 70.46 11.82 4292[70.46 | 11.82 ||
204 2.2 2161 64.21 10.53 2144) 59.42 | 10.29
2048 4,4 1091 58.11 10.14 1065 53.79 9.54
8.8 552 58.74 10.36 532] 53.69 | 9.85
3,2 1802 70.45 11.81 1786] 68.72 | 11.89
2 1,1 4266 111.4 15.95 4266f 111.4 [15.95
1216} 3,3 1435 | 85.84 14.11 1416] 83.57 | 13.52
2880| 8,8 545 81.55 14.16 530 | 70.71 12.83
10,9 476 80.04 -13.98 464 | 69.35 | 12.60 j
4 11,1,1.1)f 4391 57.82 7.73 4391} 57.82 7.73
1024]3,3,3,3|| 1499 39.50 5.98 1447 37.33 5.92
1024{4,4,4,4)] 1113 34.94 6.01 1081 35.12 5.94
1024)3.4,4,3|| 1206 38.79 6.46 1152} 36.14 6.30
1024/8,8,8.8{| 580 40.08 6.82 536 | 36.57 6.64
4 |1,1,1,1]} 4418 62.84 7.77 4418(62.84 7.77
1216(3,3,3,3|| 1513 44.27 6.55 1453} 41.89 6.42
83214,4.4,4|| 1145 42.38 6.51 1085| 39.49 6.30
832 13,4,4,3|| 1256 36.94 5.81 1195} 34.52 5.62
1216/4,5,5,4]] 989 36.69 5.89 930 | 33.89 5.61

Table 1. Non-stationary synchronous models without overlap. Size of the almost linear system:
4006,

One can observe that the number of iterations of the non-stationary algo-
rithms decreases when the parameters g(¢, k) are increased. Furthermore, if the
decrease in the number of global iterations balances the realization of more local

- updates then, less execution time is observed. Note that when g(€, k) =1 and

the splittings do not change with the local iterations, the method reduces to
the parallel nonlinear Gauss-Seidel method (see [18]) and as it can be appreci-
ated the non-stationary parallel methods are generally better than the parallel
nonlinear Gauss-Seidel method.

On the other hand, it is interesting to compare the parallel results of Table
1 with the results of the well-known one-step Gauss-Seidel Newton method {13].
The latter performs 4196 iterations and the CPU time in the IBM RS/6000 SP
computer was 20.09 seconds. So, we calculated the speed-up setting as sequen-

tial reference algorithm that method, that is, we have considered Speed-up=

CPU time of one-step GS Newton algorithm
REAL time of parallel algorithm

we obtain parallel non-stationary algorithms such that processors can achieve

. In this context, it is observed that

285

FEUP - Faculdade de Engenharia da Universidade do Porto

between 84 % and 105 % of efficiency (processgli:fis'iﬂm];&) when it uses two

processors and between 62 % and 89 % of efficiency using four processors.

|Without varying the splittings[[Varying the sphmngs_]

aj blq(e, k)][It. Time It. Time
ni SP2 SP2
2|1 1,1 4253 12.43 4292 12.43
2048] 2,2 2134 10.95 2124 10.70
2048(4,4 1072 10.42 1059 9.99

8,8 541 10.55 530 10.22

3,2 1777 12.35 1769 12.42
2121 11 4246 12.89 4246 12.89
2048] 2.2 2129 11.31 2121 11.10
2048| 4,4 1068 10.67 1058 10.32

8.8 538 10.81 529 10.49

3,2 1769 12.67 1761 12.81
213 1,1 4244 13.27 4244 13.27
2048} 2,2 2127 11.67 2120 11.47
2048 4.4 1067 11.00 1057 10.64

8,8 537 11.17 529 10.78

3,2 1763 12.99 1755 13.12
4{1](1,1,1,1]] 4327 9.05 4327 9.05
1216{3,3,3,3|| 1461 7.04 1432 6.89
832 14,4,4,4(1102 6.87 1071 6.76
832 13,4,4,3} 1210 6.36 1179 6.29
1216/4,5,5,4f| 951 6.31 920 6.23
4[2(1,1,1,1]] 4311 9.84 4311 9.84
1216]3,3,3,3|| 1452 7.37 1427 7.35
832 14,4,4,4{| 1003 7.19 1068 7.12
832 13,4,4,3(] 1200 7.01 1175 6.96
1216/4.5,5,4|] 942 6.95 917 6.92

Table 2. Non-stationary synchronous models with overlap. Size of the almost linear system: 4006,

The above conclusions are independent of the computer used. However, the
network of the cluster is very slow compared to the network of the other com-
puting platform. Hence, while the REAL time and the CPU time are similar in
the IBM RS/6000 SP computer, there is a significant difference between these
two times in the cluster. In the rest of this section all the numerical experiments
have been run in the IBM RS/6000 SP multiprocessor.

Table 2 illustrates the influence of the overlap according to different choices
of the overlapping level b = 1,2,3; see (20). Note that the parameter b indicates
that the splitting assigned to a processor k, k = 1,2,... a, has an overlap
of 2b blocks (each one of size d) with the splittings assigned to the processors
k —1 and k + 1. The conclusions are similar to those presented in Table 1.
However, it is observed that while the number of iterations decreases when the
overlap increasesle, this decrease does not get less execution time. This is due to
the increase of the number of operations performed at each processor and the
increase of the communications among processors.

Now, we report in Table 3 results of non-stationary methods for the almost
linear system of size 40000. Moreover, we have calculated for each method, the
error ||z(0) — v|l2. As it can be appreciated when the non-stationary parameters

286

VECPAR'98 - 3rd International Meeting on Vector and Parallel Processing

Without varying the splittings[[Varving the splittings
« b q(t, k) It. Time Error It. ime [Error
4 SP2 SP2 .
4 [J 1,1,1,1 40983] 818.18 [0.00025 40983818.18/0.00025
nx = 10000 3,333 14961 611.29 10.00012 147991604.55|0.00012
1<k<4 4444 1111484 598.31 |0.00010 11318|585.85{0.00010
4 1 1,1,1,1 40757] 845.37 [0.00025 40757{845.37]0.00025
nx = 10000 3,3,3,3 |/14820(622.18 {0.00012 147411616.90(0.00012
1<k<4 4444 |I11365] 607.84 |0.00010 11280|606.88/0.00010
6 0 1,1,1,1,1,1]/41266] 608.52 [0.00025 41266(608.52[0.00025
nx = 6800,k = 1,6/3,3,3,3,3,3(| 15120| 446.33 {0.00012 148741437.73/0.00012
ng = 6600 5,5,5,5.5,5{1 9474 | 433.37]0.000095 9223 [415.58{0.000094
2< k<5 4,5,5,5,5,4f] 9622 | 430.46 [0.000096 9369 [413.59]0.000095
6] 1 1,1,1,1,1,1|[40925] 636.56 |0.00025 409251636.56[0.00025
nyx = 6800,k = 1,6|3,3,3,3,3,3{/ 14906 463.43 [0.00012 14786|453.39/0.00015
ne = 6600 5,5,5,5,5,5)f 9318 | 440.76 {0.000094 9183 {434.38/|0.000094
2< k<5 34,44,4,3|[11679| 449.56 |0.00010 11548|445.59[0.00010

Table 3. Non-stationary synchronous models without and with overlap. Size of the almost linear
system: 40000.

(¢, k) increase the error is reduced and therefore the approximation to the so-
lution of the semilinear elliptic partial differential equation (18) is better. The
remaining conclusions are similar to those obtained for the almost linear system
of size 4096.

Figure 1 illustrates the influence of the parameters w = p # 1 for different
overlapping levels, b = 0, 1,2 when Algorithm 1, varying the splittings, is used.
These results correspond to the problem of size 4096 when we use four processors
and the multisplitting is defined by ny = 1024, k£ = 1,2,3,4. As it can be
observed, in a neighborhood of the optimum relaxation parameter w the models
with overlap are better than the corresponding non overlapped one. We note
that similar results were obtained without varying the splittings.

To finish this section we consider two different implementations of asyn-
chronous Algorithm 2. In the first implementation we consider a Pprocessors
connected to a host processor, where « is the number of splittings. Thus, we
use a + 1 processors. The role of the host processor is to receive, in an asyn-
chronous way, the approximation computed by other processors, to update the
global approximation and to send it to the corresponding processor.

In the second implementation we use & processors, as many as splittings.
Then, one of the processors, we assume the first one, has to compute the ap-
proximation corresponding to one of the splittings and, moreover, 1t has to take
the role of host processor. For this purpose, in the process executed by this
processor we have intercalated some PVMe calls between the sentences which
compute its approximation. This allows us to check if the approximations of some
of the other processors have arrived. In this case the host processor executes the
following tasks,

1. it stops the calculation of its approximation and it receives the approximation
or approximations sent by other processors,
2. it updates the global approximation,

287

- FEUP - Faculdade de Engenharia da Universidade do Porto

Time

W b v 9 00 O
. .

o
T

0.8 1 1.2 1.4 1.6 1.8 2
Relaxation parameter

Fig. 1. Comparison synchronous parallel models for different overlapping levels. Non-
stationary parameters g(¢,k) =4, £=1,2,... k= 1,2,3,4.

3. if the stopping criterion is not satisfied, then it sends the updated approxi-
mation to the corresponding processors, and finally
4. it continues computing its approximation.

Note that in this implementation there are some waiting times.

Figures 2 and 3 illustrate, respectively, the behavior of the above asyn-
chronous implementations of Algorithm 2. In these figures, the multisplitting
1 makes reference to the one obtained from ng = 1024, k = 1,2, 3,4, while the
multisplitting 2 corresponds to the values ny = ng = 1216, n» = nz = 832.
Overlap and variation of the splittings are not considered in these figures. The
conclusions were similar to those of the synchronous models whether the overlap
and variation of the splittings were considered or not. However, these asyn-
chronous implementations have not accelerated the convergence. This is due to
the fact that in the asynchronous implementations of our example the com-
munications increase compared to the synchronous ones, while the number of
operations performed remains of the same order. This is specially problematic
when a distributed memory multiprocessor is used.

References

1. Bai, Z.: Parallel nonlinear AOR method and its convergence. Computers and Math-
ematics with Applications, Vol. 31(2) (1996) 21-31

2. Baudet, G. M.: Asynchronous iterative methods for multiprocessors. Journal of the
Association for Computing Machinery, Vol. 25(2) (1978) 226-244

288

VECPAR’98 - 3rd International Meeting on Vector and Parallel Processing

35 T T T T T T T
30 - Multisplitting 1, g(¢,k) = 1,1,1,1 _
Multisplitting 1, g(¢,k) = 3,3,3,3 » = »
25 - Multisplitting 2, q(£,k) = 1,1,1,1 —
% Multisplitting 2, g(£,k) = 3,4,4,3 s
Time)

15 F

10 |

5 -

0 i I !)

0.6 0.8 1 1.2 1.4 1.6 1.8
Relaxation parameter

Fig.2. Comparison asynchronous parallel models without varying the splittings and
without overlap (first implementation). Size of almost linear system: 4096.

35 T T T T T T T

30 Multisplitting 1, ¢(£,k) =1,1,1,1 _
Multisplitting 1, g(£,k) = 3,3,3,3 » » «

25 . Multisplitting 2, g(£,k) =1,1,1,1 — —

, Multisplitting 2, g(£,k) = 3,4,4,3 ==

20 -

Time

15 | -

10 - -

5 F _— .

0) L 1] L ! !

0.6 0.8 1 1.2 1.4 1.6 1.8
Relaxation parameter

Fig.3. Comparison asynchronous parallel models without varying the splittings and
without overlap (second implementation). Size of almiost linear system: 4096.

289

10.

11.

13.

14.

15.

16.

FEUP - Faculdade de Engenharia da Universidade do Porto

. Berman A., Plemmons R. J.: Nonnegative Matrices in the Mathematical Sciences.

Academic Press, New York, third edition (1979). Reprinted by SIAM, Philadelphia
(1994)

- Bertsekas, D. P., Tsitsiklis, J. N.: Parallel and Distributed Computation. Prentice-

Hall, Englewood Cliffs, New Jersey (1989)

. Birkhoff, G.: Numerical Solution of Elliptic Equations. Vol. 1 of CBMS Regional

Conference Series in Applied Mathematics. Society for Industrial and Applied
Mathematics, Philadelphia (1970)

- Bru R., Elsner L., Neumann M.: Models of parallel chaotic iteration methods.

Linear Algebra and its Applications, Vol. 103 (1988) 175-192

. Frommer, A.: Parallel nonlinear multisplitting methods. Numerische Mathematik,

Vol. 56 (1989) 269-282

- Fuster, R., Migallén, V., Penadés, J.: Non-stationary parallel multisplitting AOR

methods. Electronic Transactions on Numerical Analysis, Vol. 4 (1996) 1-13

. Geist, A., Beguelin, A., Dongarra, J., Jiang, W., Manchek, R., Sunderam, V.: PVM

3 User’s Guide and Reference Manual. Technical Report ORNL/TM-12187. Oak
Ridge National Laboratory, Tennessee (1994)

IBM Corporation: IBM PVMe for AIX User’s Guide and Subroutine Reference.
Technical Report GC23-3884-00, IBM Corp. Poughkeepsie, New York (1995)
Mas, J., Migallén, V., Penadés, J., Szyld, D B.: Non-stationary parallel relaxed
multisplitting methods. Linear Algebra and its Applications, Vol. 241/243 (1996)
733-748

2. O’Leary, D. P., White, R. E.: Multi-splittings of matrices and parallel solution

of linear systems. SIAM Journal on Algebraic Discrete Methods, Vol. 6 (1985)
630-640

Ortega, J. M., Rheinboldt, W. C.: Iterative Solution of Nonlinear Equations in
Several Variables. Academic Press, San Diego (1970)

Ostrowski, A. M.: Uber die determinanten mit iberwiegender hauptdiagonale.
Commentarii Mathematici Helvetici, Vol. 10 (1937) 69-96

Robert, F., Charnay, M., Musy, F.: Itérations chaotiques série-paralléle pour des
équations non-lindaires de point fixe. Aplikace Matematiky, Vol. 20 (1975) 1-38
Sherman, A.: On Newton-iterative methods for the solution of systems of nonlinear
equations. SIAM Journal on Numerical Analysis, Vol. 15 (1978) 755-771

Varga, R. S.: Matrix Iterative Analysis. Prentice Hall, (1962)

8. White, R. E.: Parallel algorithms for nonlinear problems. SIAM Journal on Alge-

braic Discrete Methods. Vol. 7 (1986) 137-149

290

VECPAR'98 - 3rd International Meeting on Vector and Parallel Processing

Spatial Data Locality With Respect to Degree of
Parallelism in Processor-And-Memory
Hierarchies

2

Renato J. O. Figueiredo!, José A. B. Fortes' and Zina Ben Miled?

! School of ECE - Purdue University, West Lafayette, IN 47907
2 Department of EE - Purdue University, Indianapolis, IN 46202
{figueire,fortes}@ecn.purdue.edu, miledCengr.iupui.edu

Abstract. A system organized as a Hierarchy of Processor-And-Memory
(HPAM) extends the familiar notion of memory hierarchy by including
processors with different performance in different levels of the hierarchy.
Tasks are assigned to different hierarchy levels according to their degree
of parallelism. This paper studies the spatial locality (with respect to
degree of parallelism) behavior of simulated parallelized benchmarks in
multi-level HPAM systems, and presents an inter-level cache coherence
protocol that supports inclusion and multiple block sizes on an HPAM
architecture. Inter-level miss rates and traffic simulation results show
that the use of multiple data transfer sizes (as opposed to a unique size)
across the HPAM hierarchy allows the reduction of data traffic between
the uppermost levels in the hierarchy while not degrading the miss rate
in the lowest level.

1 Introduction

The Hierarchical Processor-And-Memory (HPAM) architecture [15] has been
proposed as a cost/effective approach to parallel processing. The HPAM concept
* is based on a heterogeneous, hierarchical organization of resources that is similar
to conventional memory hierarchies. However, each level of the hierarchy has not
only storage but also processing capabilities. Assuming that the top (i.e. first)
level of the hierarchy is the fastest, any given memory level is extended with
processors that are slower, less expensive and in larger number than those in the
preceding level. Figure 1 depicts a generic 3-level HPAM machine.

The mapping of an application to an HPAM system is based on the degrees
of parallelism that the application exhibits during its execution. Each level of
an HPAM hierarchy handles portions of code whose parallelism degree is within
a certain range. Levels with large number of slow processors and large memory
capacity (bottom levels) are responsible for the highly parallel fractions of an
application, whereas levels with small number of fast processors and memories
are responsible for the execution of sequential and moderately parallel code.

An HPAM machine exploits heterogeneity, computing-in-memory and local-
ity of memory references with respect to degree of parallelism to provide supe-
rior cost/performance over conventional homogeneous multiprocessors. Previous

291

FEUP - Faculdade de Engenharia da Universidade do Porto

Level 1

Level 2

Fig. 1. Processor and memory organization of a 3-level HPAM

studies [14.15] have empirically established that applications exhibit temporal
locality with respect to degree of parallelism. This paper extends these studies by
empirically establishing that applications also exhibit spatial data locality. Fur-
thermore, this paper studies the impact of using multiple transfer sizes across an
HPAM hierarchy with more that two levels in inter-level miss rates and traffic.
To this end, this paper pProposes an inter-level coherence protocol that supports
inclusion and multiple block sizes across the hierarchy.

The data locality studies have been performed through execution-driven
simulation of parallelized benchmarks. Several benchmarks from three differ-
ent suites (CMU [9], Perfect Club [7] and Spec95 [11]) have been instrumented
to detect do-loop parallelism with the Polaris [12] parallel compiler. The stream
of memory references generated by a benchmark is simulated by a multi-level
memory hierarchy simulator that implements the proposed inter-level coherence
protocol to obtain measurements of data locality, data traffic and invalidation
traffic at each HPAM level. '

The rest of this paper is organized as follows. Section 2 introduces the HPAM
machine model and discusses coherence protocols for an HPAM architecture. Sec-
tion 3 presents the methodology used to perform the data locality studies, and
Section 4 presents simulation results and analysis of the locality behavior of ap-
plications and of the proposed inter-level coherence protocol. Section 5 concludes
the paper.

2 HPAM Architecture

A hierarchical processor-and-memory (HPAM) machine is a heterogeneous, mul-
tilevel parallel computer. Each HPAM level contains processors. memory and
interconnection network. The speed and number of processors. latency and ca-
pacity of memories and network differ between levels in the hierarchy. The fol-
lowing characteristics hold across the different HPAM levels from top to bottom:

292

VECPAR’98 - 3rd International Meeting on Vector and Parallel Processing

individual processor performance decreases, number of processors increases, and
memory /network latency and capacity increase.

Tasks are assigned to HPAM levels according to their degree of parallelism
(DoP). Highly parallel code fractions of an application are assigned to bottom
levels, where large number of processors and large memory capacity are avail-
able, while sequential and modestly parallel fractions are assigned to top levels.
where a small number of fast processors and memories are available.

The HPAM approach to computing-in-memory bears similarities with IRAM
and PIM efforts [2, 10], but it relies on heterogeneity and locality with respect to
degree of parallelism to build a hierarchy of processor-and-memory subsystems
where each subsystem is designed to be cost-efficient in its parallelism range.
A massively parallel system implemented with dense, relatively inexpensive and
slow memory technology, can be very efficient for highly parallel code, while a
tightly-coupled symmetric multiprocessor containing a smaller amount of fast,
expensive memory, can be very efficient for code mostly sequential or with moder-
ate parallelism. The merging of these systems under the HPAM concept provides
a cost-efficient solution for applications with different levels of parallelism.

2.1 Inter-Level Coherence Protocols

A distributed shared-memory (DSM) implementation of HPAM is assumed in
this paper. Each level of such shared-memory HPAM machine relies on caching
of data from remote levels to reduce inter-level bandwidth requirements and im-
prove remote access latency. Therefore, cache coherence has to be enforced both
inside an HPAM level and among different levels. Cache-coherence solutions that
use a combination of different protocols (snoopy and directory-based) have been
proposed and implemented [6] for homogeneous DSMs. and can be reused in an
HPAM context. However, an HPAM machine can take advantage of coherence
solutions that exploit its heterogeneous nature.

In this paper, the potential advantages of having multiple line sizes across the
hierarchy are studied. Similar to conventional uniprocessor memory hierarchies.
multiple Jine sizes in an HPAM context can provide low miss rates in the bottom
levels of the hierarchy while not sacrificing traffic and miss penalty in the upper
hierarchy levels. In this section, a coherence protocol that allows requests to be
generated by any level of the hierarchy (as opposed to a conventional memory
hierarchy, where all accesses are generated in the topmost level), and supports
both inclusion and multiple line sizes, is described. Similar to the MESI coher-
ence protocol [8], the protocol assigns one of four states to each memory block
and relies on invalidations to maintain coherence.

Let the hierarchical organization have h levels, where level | is the top level
and h is the bottom hierarchy level. Let Is; be the line size (also referred to as
block size) in level ¢. All data transfers between adjacent levels 7 and i + 1 have
size Is;. Let B;(i) be block 7 in level j, where ¢ > 0 and 1 < j < h. Assume that
block sizes across the hierarchy satisfy the relation:

293

FEUP - Faculdade de Engenharia da Universidade do Porto

Bz keeN 1)

lsk

Given this alignment, let the f—:—f sub-blocks in level k of a block B; (1) be
defined as:

Be (54} B (% wig W . SR Gk (2
lSk ls;,. lsk lsk

and the unique superblock in level [of B;(i), 1 > j, be defined as:

ls; . .
B (l;;[‘ * iJ) ‘ (3)
For the proposed inter-level coherence protocol, blocks can be in any of the

following four states:

— Invalid (I): data in the block is entirely non-valid

— Accessible (A): data in the block is valid and may be shared (read-only)
by one or more processors

Reserved (R): data in the block is the only valid copy in the hierarchy
Partially Invalid (P): at least one sub-block of the memory block is out-
dated (due to a write in an upper-level memory)

Memory access operations consist of read and write commands that can be
issued from any level j of the hierarchy. These operations are considered atomic.
The read/write commands are defined in terms of four primitive coherence op-
erations, as follows: (the algorithms used to implement these basic inter-level
coherence operations are defined in Appendix A)

= ULI(B;(#))(Upper-Level Invalidate): Invalidates all sub-blocks of B;(#)

— ULW(B;(i))(Upper-Level Writeback): Writes back dirty data to B; (1)
from upper-level sub-blocks; sets sub-blocks to Accessible (read-only)

— LLP(B;(7))(Lower-Level Partial-Invalidate): Sets all superblocks of B (i)
Partially Invalid ‘ ,

— LLR(B;(i))(Lower-Level Read): Fetches block B; (i) from lower-level su-
perblocks; sets super-blocks to Accessible (read-only)

The coherence protocol implements read/write operations as combinations of
these four primitives. In order to allow for multi-level inclusion, i.e., (definition
here), the coherence protocol enforces the following properties:

1. If a block B;(i) is Partially Invalid. then all of its superblocks must also he
Partially Invalid

2. If a block B;(i) is Invalid, then all of its sub-blocks must also be Invalid

3. If a block Bj(i) is Reserved, then all of its sub-blocks must be Invalid and
all of its superblocks must be Partially Invalid

4. If a block B;(i) is Accessible, then all of its sub-blocks are either Invalid or
Accessible, and all of its superblocks are either Partially Invalid or Accessible

294

VECPAR'98 - 3rd International Meeting on Vector and Parallel Processing

Algorithms for the coherent write and read operations of a block B; (i) in level j
are presented in Appendix A. Property 1 allows the coherence controller to fetch
the most recent copy of a block Bj(i) if any sub-block of it has been modified
by an upper-level processor before completing a read or write request. Property
3 ensures that a processor can complete a write to block B;(7) when the state
of B;(i) is Reserved without involving other processors of the write, since it is
the only processor that has a valid copy of the block.

An example of the inter-level coherence protocol operation on a 3-level con-
figuration is shown in Figure 2. Each memory block is represented in this figure
by both its state (gray-shaded boxes) and contents of each of its sub-blocks.
Note that the block sizes differ among the levels; a block in level 2 is twice larger
than a block in level 1 and four times larger than a block in level 0.

The example begins with the configuration of Figure 2(a): the bottom level
has valid data in the Reserved state, and the other levels have invalid data. Level
0 then issues a memory read of block By(1). The protocol issues a lower-level
read primitive, bringing a sub-block of level 2 to level 1, containing values x
and y, then a subblock of level 1 to level 0, containing the desired data (y). All
blocks involved in this transaction become Accessible (Figure 2(b)).

Suppose level 1 issues a write to block B;(0) and let t and u denote the
new contents of the respective sub-blocks. The protocol handles this request by
invalidating upper level sub-blocks (Bp(0) and Bg(1)), setting the lower level
superblock B (0) to Partially Invalid and setting the state of B;(0) to Reserved
(Figure 2(c)). '

The next memory reference in this example is a read of block By(3) (Fig-
ure 2(c)). Similarly to the first read, data is brought from level 2 to level 1. then
to level 0. The states of the blocks in levels 0 and 1 become Accessible. However,
the state of the block Bs(0) in level 2 remains Partially Invalid to flag that at
least one of its sub-blocks (B;(0) in this case) contains data that needs to be
written back, as Figure 2(d) shows.

The last memory reference of this example is a read of Ba(0). This reference
generates a write-back request to the Reserved sub-block B;(0) in the upper
level. The Reserved block in level 1 becomes Accessible (Figure 2(e)). This as-
sumes the existence of state bits associated with each sub-block of the adjacent
upper level. The implementation of read and write fences for relaxed consis-
tency models requires that the coherence protocol handles acknowledgments of
all messages exchanged between adjacent levels (not shown in the primitives of
Appendix A). The completion of an operation (read or write) issued by proces-
sor P with respect to all other processors is signalled by the arrival of positive
acknowledgment from upper and lower adjacent levels.

3 Simulation Models and Methodology

The locality studies presented in this paper are based on a generic four-level
HPAM architecture. Each level is labelled from 0 to 3, where 0 represents the

295

FEUP - Faculdade de Engenharia da Universidade do Porto

read BT read HO(Y)
level O ! 1 ! ! ! 4
;
write K1(0) 4 N
tevel 1 1 1 — A/ | . R 1
1] O] O e
4 N '
level 2 R ‘A ‘P
sl y 2w x Ly 7 fw x 1y 17 [w
[€)] (b) («) i
Y
level
. - w . R
4
level 1 R A Ay A
t l u 7. [w t I uy 7.] w
reasd B20) 4 b : . \ state
; T 0 TV "
level 2 P % :' A
X ' y 1/ w ! l L] l 4] Y contenis
() (c)

Fig. 2. Example of coherence protocol I for 3-level configuration. Line states are shown
in the top of each box: P (Partially Invalid), | (Invalid), A (Accessible) and R (Reserved)
and contents of blocks are shown below the state.

topmost level (smallest degree of parallelism). Level 7 in the hierarchy is respon-
sible for executing fractions of code which have degree of parallelism greater
or equal to DoP; and less than DoP;y; (or infinity for the bottom level). The
degrees of parallelism in this study were fixed as powers of ten, DoP, = 1,
DoP; = 10, DoP>» = 100 and DoP3 = 1000. The variables used in the locality
experiments in this paper are defined as follows:

— Line size of level 7 (Is;): represented in logs notation in this paper (i.e.ls; = &
means a line size of 2% = 256 bytes). This parameter determines the amount
of data that is transferred to level 7 when a data miss occurs in this level. It
is assumed that each level has an inter-level cache that is shared by all level
processors. The shared caches at each level are assumed to be ideal (fully
associative and infinite) in the simulations performed.

— Data miss rate at level 7 (mr;): percentage of memory references (loads and
stores) in level ¢ that miss. Misses in level i can be serviced either by disk
(cold misses) or by another level j, i#j. The latter case will be referred
to as inter-level misses throughout this paper. Intra-level misses. which are
serviced by processors in the same level, are not modeled.

— Data traffic between levels i and 7 + 1 (trii41): aggregate amount of data
transferred between levels i and 7 + 1. Inter-level communication is assumed
to occur between adjacent levels only. Therefore, tr; ;11 accounts not only
for the amount of data exchanged between levels i and 7 + 1. but also for
any data transfer from/to level j, j<i to/from level k, k>i+ 1.

256

VECPAR'98 - 3rd International Meeting on Vector and Parallel Processing

The simulation methodology combines compiler-assisted parallelism identi-
fication with execution-driven simulation of benchmarks. An application under
study is first instrumented with the Polaris [12] source-to-source parallelizing
compiler to detect do-loop parallelism. The instrumented Fortran code has tags
inserted in the beginning and end of each loop that indicate the degree of par-
allelism of the loop. The Polaris-generated code is then compiled, and the ex-
ecutable code is used as input to an execution-driven simulator. The simulator
models a multi-level, shared-memory hierarchy, and is built on top of Shade [1].

The simulator engine traces each memory data access during program exe-
cution. The engine identifies the level that issues each access by comparing the
current degree-of-parallelism tag (inserted in the instrumentation phase) with
the parallelism thresholds DoP;. The memory access is forwarded to the appro-
priate level cache handler. which characterizes the access either as a hit (data
has previously been in the level’s cache) or a miss (either the data is present
in another level's cache or needs to be fetched from disk). Coherence messages
are sent by the cache handler to other level caches on misses, according to the
cache coherence protocol under use. Hence, the inter-level coherence protocol
behavior is modeled. However, the intra-level coherence protocol is not modeled.
The miss rate and traffic results obtained with such model are therefore opti-
mistic, since ideal caches and intra-level sharing are assumed. Nonetheless. this
simplified model is able to capture the inherent spatial locality with respect to
degree of parallelism of the applications under study. Miss rates degrade when
finite caches and intra-level sharing are considered, but locality with respect. to
degree of parallelism is still evident for non-ideal memory systems [3].

The following benchmarks from the CMU, Perfect Club and Spec95 suites
have been used in the spatial locality studies: Radar, Stereo, FFT2 and Airshed
(CMU Parallel Suite [9]); TRFD, FLO52, ARC2D. OCEAN and MDG (Perfect
Club Suite [7]); Hydro2d and Swim (Spec95 Suite).

4 Simulation Results and Analysis

For each benchmark, simulations have been performed for varioys line sizes (1si).
and measurements of miss rates (mr;) and data traffic (tr;.i+1) have been col-
lected. Two inter-level coherence protocols have been considered in this study.
Initially, a homogeneous solution analogous to a cache-only (COMA) protocol [4]
is used to observe the inherent locality behavior of the set of benchmarks under
study. In this scenario, a block can migrate to any level of the hierarchy, i.e.,
there is no fixed home node associated with a given memory block. Such scenario
1s referred to as “migration protocol” in the rest of this paper. The other coher-
ence solution considered is the heterogeneous protocol introduced in Section 2.1.
Such scenario is referred to as “inclusion protocol” in the rest of this paper.
Subsection 4.1 presents data obtained when a migration protocol with unique
line sizes across the hierarchy is assumed. Such scenario is used as a basis for
the analysis of (level) data locality. Subsection 4.2 compares the results obtained
from the migration scenario to results obtained when the coherence protocol en-

297

FEUP - Faculdade de Engenharia da Universidade do Porto

forcing inclusion presented in Section 2.1 is used and line sizes are allowed to be
different across levels.

4.1 Migration protocol with unique line size across levels

The results obtained for this protocol configuration confirm empirically that
applications have good spatial locality with respect to degree of parallelism, in
addition to previously observed [14] temporal locality with respect to degree of
parallelism. Inter-level miss rates are low for small line sizes: a highest miss rate
of 17.3% occurs in Swim for 16-Byte line sizes, but typical values are around 1%.
Furthermore, inter-level miss rates tend to decrease as the line size gets larger.
Figure 3 shows this trend for the benchmark FL052, assuming a 4-level
HPAM. The figure is divided into four sub-plots, each corresponding to an
HPAM level. labelled lvl0 through vl9 in the x-axis. Each sub-plot is further
divided into six line sizes, ranging from ls = 2* to Is = 2!4 bytes. For each level
and line size, the absolute number of misses is plotted in the y-axis in log scale,
and the corresponding miss rate is indicated in the x-axis between parentheses.
The different shades of the bars in the y-axis correspond to the percentage of
inter-level misses that are either cold misses or serviced by another level. To
illustrate this notation, consider the case where FLO52 runs on a 4-level HPAM
with line size of 2% = 64 bytes in all levels. The inter-level miss rates for levels 0
through 3 are 3.40%, 0.35%, 0.20% and 0.63%. For level [ul2 and line size of 64
bytes, approximately half of the inter-level misses are serviced by level 3. 20% are
serviced by level 1, 30% by level 0, and a negligible fraction is due to cold misses.

FLOSZ
8
3
e
0
26
[3 Dmlevelo
54 Etotever 1
2 B
§2 i g o] -lo level 2
2 : Wl o ever s
-d
7 i
=0+ '|ll|(l||ll|llll|||ll
FfFgFesw FEEF FTEFFFE FFrfFEss
$iifis i85 PECEEE DEGEQG
T ¢ ®» o~ - ® o e = = < T S e o e e
$33533F 1133 I3less Jyiegs
€ g ¢ = & 2 s £ 2 = N o o & & a = 2 8 5%
e g g = ~ & o 2 2 g =2 =
22:222 2222 zzzggg .!.zzgg,%_

level,ig(linesize),(% miss rate)

Fig. 3. Misses: FLO52, 4 levels, protocol C

Figure 3 shows that the spatial locality behavior for FLO5? varies across
hierarchy levels. For level 0, the inter-level miss rate remains approximately con-
stant, slightly degrading as the line size increases. In contrast, the miss rate
decreases about two orders of magnitude as line size increases from 24 to 214 in

298

VECPAR’98 - 3rd International Meeting on Vector and Parallel Processing

level 3. Such behavior suggests that the parallel fraction of FLO52 that executes
in the lowest hierarchy level operates on large, regular data structures that ben-
efit from fetching large data lines on a miss.

While a larger line size tends to improve inter-level miss rates, it also tends
to increase inter-level data traffic. Figure 4 shows how data traffic between adja-
cent leVASRARSS a5 sklniemiationriMeasing esrVistonendiberaliePr@ssingotice that
the traffic between levels 0 and 1 in this case increases by about three orders
of magnitude for the range of line sizes considered, while the traffic between
levels 2 and 3 increases only by about two orders of magnitude across the same
line size range. Such behavior can be explained with the aid of the inter-level
miss rate profile for FLO52 (Figure 3). The larger line sizes brought to levels
2 and 3 often contain data that is likely to be used in future references. while
larger line sizes in levels 0 and 1 most often bring data that remains unused.
Since traffic is proportional to the product of number of misses and line size,
if the number of misses do not decrease as line size increases, the traffic increases.

FLO52
1
210 =
@
S
2
g 2
£
8
=
o
i
74
.
- @ «© =) o~ - - w ﬂ o o~ g - -3 L -] = o~ -
] 1] 1l - - - N " 1 - L - n 1} n - - -
7]] n |}]] @ 2 o " n |/} 0 0 1] N " 1
S ST S 2 e @ eSS S B - S S 2 a8 e
- - - - - o~ o~ o - -] (] ™ - - -
é 1 é - A d - 1 1) [o~ o o)] i (] (] ™
(-] 1 1] 1 L ad - - 1 1) o~ ~ o~ 1) 1
-] (-] o - - o~ o~ o~

levels, Ig(linesize)

Fig.4. Traffic: FLO52, 4 levels, protocol C

Table 1 summarizes the maximum and minimum miss rates found for each
benchmark studied, as line size varies from 2% to 214 bytes in an HPAM or-
ganization with four levels. The benchmarks Stereo and Swim have only three
distinct levels of parallelism detected by Polaris, and FFT2 has only two. For
these benchmarks, the HPAM levels that do not generate memory references
have null minimum and maximum miss rate entries in Table 1.

The results summarized in Table 1 show good spatial locality with respect
to degree of parallelism for the benchmarks studied. The maximum inter-level
miss rate observed for the lowest level of the hierarchy is 0.9%; for the topmost
level, the maximum inter-level miss rate observed is 17.3% for Swim, and less
than or equal to 4.01% for all other benchmarks. In general, the best miss rates
are found in the lowest level of the architecture, where loops with high degree
of parallelism are executed.

299

FEUP - Faculdade de Engenharia da Universidade do Porto

Table 1. Min/Max inter-level miss rates for a 4-level HPAM configuration

Inter-level Miss rate
Benchmark Level 0 Level 1 Level 2 Level 3
min max min max min max min max
FLO52 2.66% |[3.40% | 0.15% | 0.84% 0.082% | 0.48% [0.0082% | 0.20%
TRFD 0.12% [1.30% | 5.28% |6.97% 0.87% | 1.08% | 0.046% 0.086%
OCEAN [0.0052% [0.17% [0.096% | 1.63% | 0.27% 1.70% | 0.023% | 0.45%
MDG 0.39% |1.50% | 0.77% | 3.16% 0.049% | 3.76% | 0.0012% | 0.097%
ARC2D 1.03% |2.17% [0.0043%] 1.45% [0.0071%| 1.41% 0.0004% | 0.062%
Alirshed 2.92% [4.01% | 0.48% [0.72% | 0.049% |0.049% 0.018% |0.037%

Stereo 0.021% |1.48% - - 0.049% | 1.51% | 0.011% | 0.12%
Radar |0.00039%]0.066%| 0.27% | 1.63% | 0.035% 3.79% [0.0015% | 0.90%
FFT2 [0.00008%0.065% - - - - 0.0050% | 0.65%

Hydro2d [0.0053% [2.88% | 1.78% |10.60%| 0.29% 6.55% [0.00038%/0.0074%
Swim 12.81% |17.30%] 0.80% | 9.48% [0.0010%0.011%, - -

4.2 Inclusion protocol

Identical line sizes: The inclusion protocol was initially studied assuming that
a unique line size is used across all HPAM levels, similar to the migration protocol
discussed in Subsection 4.1. Since the level caches are assumed to be ideal,
and intra-level sharing is not modelled, the results for the inclusion coherence
protocol with unique line size do not differ considerably from the results obtained
from the migration protocol simulations. in general. Assuming such idealized
memory model, both protocols yield measurements that characterize the inherent
sharing behavior of the benchmarks. The inter-level miss rates obtained for this
scenario differ by at most 17% from the migration scenario for TRFD, with an
average difference of 1.4% across all benchmarks.

Distinct line sizes: Conventional uniprocessor cache hierarchies typically use
distinct line sizes across the cache levels; large lines are desirable in large caches
to improve miss rates, while small cache lines are desirable in small caches to
avoid excessive bandwidth requirements and increases in miss penalties and con-
flict misses [5,13]. An HPAM machine can also benefit from distinct line sizes
across levels by reducing inter-level traffic while not sacrificing inter-level miss
rates.

The inter-level miss rate and traffic profiles for the benchmark FLO52 (Fig-
ures 3 and 4) illustrate a scenario commonly observed in the simulations per-
formed. where a large line size effectively reduces the inter-level miss rate in
level 3, but unneccessarily increases the traffic between levels 0 and 1 without
improving the inter-level miss rates in these levels. The inter-level inclusion co-
herence protocol described in Section 2.1 supports a configuration with distinct
line sizes across HPAM levels; the effects of distinct line sizes on inter-level miss
rates and traffic have been captured quantitatively through simulation and are

10

300

VECPAR’98 - 3rd International Meeting on Vector and Parallel Processing

discussed in this subsection.

Line sizes have been set up such that the relationship Is;,; > Is; holds for any
adjacent levels ¢.7 4+ 1. Hence, levels executing highly parallel code are assigned
line sizes strictly larger than levels executing moderately parallel or sequential
code. Table 2 shows how inter-level miss rates and traffic for a configuration
with multiple line sizes compare to configurations with unique line sizes, for the
benchmark MDG. The first row of Table 2 shows inter-level miss rates for the
nultiple line size configuration. Rows 2 through 5 of the table show miss rates
obtained in four different simulations with unique line sizes, each corresponding
to a line size chosen for the multiple line size scenario. The remaining rows of
Table 2 show the total traffic in the level boundaries for three scenarios: multiple
line sizes, unique line of smallest size (2° Bytes). and unique line of largest size
(2'4 Bytes).

Table 2. Traffic and inter-level miss rates for MDG with multiple line sizes: 2%, 2%, 2'°

-and 2"

Level 0 |Level 1 |[Level 2 |[Level 3
(Is=2°) |(ls=2%) |(Is=2'°) |(ls=2'%)
Miss rate (multiple) 11.28% [1.38% [0.10% [0.0012%
Miss rate (unique, 2°) [0.82% [2.17% [1.00% [0.025%
Miss rate (unique, 2°) [0.48% [1.44% [0.29% |0.0073%
Miss rate (unigque, 2'°)|0.56% 0.98% . [0.10% 0.0026%
Miss rate (unique, 2'7){0.39% [0.77% [0.049% [0.0012%
levels 0-1{levels 1-2flevels 2-3
Traffic (multiple) 26.6GB [12.9MB [17.7MB
Traffic (single, Is=2°) |15.6GB [10.8MB [11.3MB |-
Traffic (single, Is=2"")[1.6TB [71.8MB [127.7MB|-

Table 2 shows that the miss rate observed in the multiple line size scenario
is at most 56% larger than the rate observed for the corresponding unique line
size rate (values in bold face) for each level. For levels 2 and 3, in particular. the
inter-level miss rates are equal for both scenarios. When inter-level traffics are
compared, the multiple line size scenario demands about an order of magnitude
less traffic than the unique line size scenario with the largest line size, while
demanding no more than 70% more traffic than the unique line size scenario
with the smallest line size. In this example, the multiple line size configuration
is therefore capable of providing very low miss rates at the lowest hierarchy
level without generating excessive traffic in the upper level boundaries. When
a unique line size is used, either the miss rate in the lowest level or traffic in
the topmost level degrades. The same motivations for using multiple line sizes
across uniprocessor memory hierarchies thus apply to a hierarchy of processor-
and-memories: maintaining good miss rates across the hierarchy while avoiding
the generation of unnecessary traffic in the upper levels.

11

301

FEUP - Faculdade de Engenharia da Universidade do Porto

Table 3 shows the average increase in the inter-level miss rate of the multiple
line size configuration compared to the miss rate of a corresponding unique line
size configuration for simulations performed in six of the studied benchmarks.
The inter-level miss rates of the lowest levels in the hierarchy remain unchanged.
with respect to the unique line size scenario, when multiple line sizes are used.
Miss rates at the topmost level increase by 31% in average.

Table 3. Average ratio: miss_rate(multi) /miss_rate(single)

Level O[Level 1|Level 2[Level 3
Average mrouiei [mrgingle]1.31 |1.05 |1.01__|1.00

5 Conclusions”
The conclusions reached in this paper provide guidelines to the design of the
memory and network subsystems of an HPAM machine. The implementation of
a coherence controller that supports multiple line sizes across the hierarchy is
an ongoing research subject. The inclusion coherence protocol presented in this
paper has been used as a proof of concept to study the advantages of fetching
larger blocks of data to lower levels of the hierarchy as a means of increasing
spatial locality without sacrificing traffic in the upper levels of the hierarchy. One
solution under investigation that may require minimal modifications to the exist-
ing directory controllers relies on hardware-assisted prefetching. In this scheme,
the coherence unit size is kept constant across the hierarchy. However, lower
hierarchy levels prefetch larger number of coherence units on a miss than upper
levels. Such scheme allows reusing of cache coherence implementations found in
homogeneous machines.
The experimental results obtained in this study for inter-level miss rates among
different parallelism levels confirm that there is spatial locality with respect to
degree of parallelism in parallel applications, in addition to previously observed
temporal locality. The differences in degrees of parallelism and memory capacity
across HPAM levels motivate the use of multiple line sizes across the hierar-
chy as a means of reducing inter-level traffic associated with large line sizes
while keeping miss rates comparable to the case where a unique line size is used
across all levels An invalidation-based inter-level coherence protocol that sup-
ports such multiple line size configuration across processor-and-memory levels
has been proposed, and the experimental results obtained with simulations using
such protocol have confirmed that more balanced inter-level miss rate and traffic
characteristics can be achieved with line sizes that increase from the top to the
bottom of the hierarchy. A distribution with larger data blocks at the lowest lev-
els of the hierarchy is consistent with the proposed HPAM organization, where
lowest levels have larger amounts of memory.

Idealized caches and line sizes ranging from very small to very large have

12

302

1

VECPAR’98 - 3rd International Meeting on Vector and Parallel Processing

been used in the experiments in order to observe the inherent locality behavior
of the studied benchmarks. The authors believe that the overall inter-level lo-
cality behavior in systems with non-ideal caches can be derived from the results
obtained.

An HPAM machine combines heterogeneity, data locality with respect to de-
gree of parallelism and computing near memory to provide a cost-effective solu-
tion to high-performance parallel computing. The data locality studies presented
in this study confirm that HPAM machines have the potential to competitively
exploit the trend towards merging processor and memory technologies and the
increasingly more powerful but also extremely expensive fabrication processes
needed for billion-transistor chips.

Appendix A: Inter-Level Coherence Protocol Messages

ULW(Bj(i)) // UPPER-LVL WRITEBACK [|/LLR(Bj(i)) // LOWER-LEVELS READ
for all level-(j-1) sub-blocks temp = Bj(i)
if (sub-block is PART-INV) then L=3j

ULW (sub-block)
if (sub-block is not INV) then
write-back sub-block from
level j-1 to level j.
state (sub-block) = ACC
state (Bj(i)) = ACC

while (temp is INV)

increment L

temp = level~L superblock of temp
decrement L
while (L >= j)

read level-L superblock

from level L+1

state(level-L superblock) = ACC
decrement L

ULI(Bj(i)) // UPPER-LVL INVALIDATE
if (j is not the first level)
for all level-(j-1) sub-blocks
if (sub-block is not INV)
state(sub-block) = INV
ULI (sub-block)

LLP(Bj(i)) // LOWER-LEVELS
// PARTIAL-INVALIDATE
temp = superblock of Bj(i)
L = j+2
while (temp is not PART-INV)
state(temp) = PART-INV
increment L
temp=level-L superblock of temp

READ(Bj(i)) // MEMORY READ
if (Bj(i) is INV)
LLR(Bj (1))
state(Bj(i)) = ACC

if (Bj(i) is PART-INV) then
ULW(Bj (i))

read Bj(i) from level j

WRITE(Bj(i)) // MEMORY WRITE
if (Bj(i) is RES or ACC)
ULI(Bj(i)); LLP(Bj(i));
if (Bj(i) is PART-INV)
ULW(Bj(i)); ULI(Bj(i));
if (Bj(i) is INV)
LLR(Bj(i)); LLP(Bj(i));
state(Bj(i)) = RES
write Bj(i) to level j

Acknowledgments: This research was supported in part by NSF grants
ASC-9612133, ASC-9612023 and CDA-9617372. Renato Figueiredo is also sup-
ported by a CAPES grant.

13

303

FEUP - Faculdade de Engenharia da Universidade do Porto

References

1.

[

~1

10.

B. Cmelik and D. Keppel. Shade: A fast instruction-set simulator for execution
profiling. In Proceedings of the 1994 SIGMETRICS Conf. on Measurement and
Modeling of Computer Systems, 1994.

. D. Patterson et al. A Case for Intelligent RAM: IRAM. JEEE Micro, Apr 1997.
. Figueiredo. R. J. O. and Fortes, J. A. B. and Ben-Miled, Z. and Taylor, V. and

Eigenmann, R. Impact of Computing-in-Memory on the Performance of Processor-
and-Memory Hierarchies. Technical Report TR-ECE-98-1, Electrical and Com-
puter Engineering Department, Purdue University, 1998.

. Hagersten, E. and Landin. A. and Haridi, S. DDM - A Cache-Only Memory

Architecture. JEEE Computer, Sep. 1992.

. J.L. Hennessy and D.A. Patterson. Computer Architecture: A Quantitative Ap-

proach. Morgan Kaufmann, 1996.

- Lenosky. D. and Laudon, J. and Gharacharloo. K. and Gupta, A. and Hennessy,

J. The Directory-Based Cache Coherence Protocol for the DASH Multiprocessor.
In Proc. of the 17th Annual Int. Symp. on Computer Architecture, Mav 1990.

. M. Berry et al. The Perfect. Club Benchmarks: Effective Performance Evaluation on

Supercomputers. Technical Report UIUC-CSRD-827, Center for Supercomputing
Research and Development, University of Illinois at Urbana-Champaign, July 1994.

- M. Papamarcos and J. Patel. A Low Overhead Coherence Solution for Multi-

processors with Private Cache Memories. In Proc. of 11th Annual Int. Symp. on
Computer Architecture, 1984,

- P. Dinda et al. The CMU Task parallel Program Suite. Technical Report CMU-

('8-94-131, School of Computer Science, Carnegie Mellon University, Pittsburgh.
Pennsylvania. Jan 1994.

P.M. Kogge and T. Sunaga and H. Miyataka and K. Kitamura and E. Retter.
Combined DRAM and Logic Chip for Massively Parallel Systems. 16th Conference
on Advanced Research in VLSI, 1995,

11. Standard Performance Evaluation Corporation. Spec newsletter, Sep 1995.

13.

14.

15.

12. W. Blume, R. Doallo, R. Eigenmann, J. Grout, J. Hoeflinger, T. Lawrence, J. Lee,

D. Padua, Y. Paek, B. Pottenger, L. Rauchwerger and P. Tu. Parallel Programming
with Polaris. JEEE Computer, Dec 1996.

Y.-8. Chen and M. Dubois. Cache Protocols with Partial Block Invalidations. In
Proc. 7th Int. Parallel Processing Symp., 1993.

Z. Ben-Miled and J.A.B. Fortes. A Heterogeneous Hierarchical Solution to Cost-
efficient High Performance Computing. Par. and Dist, Processing Symp.. Oct 1996.
Z. Ben-Miled, R. Eigenmann., J.A.B. Fortes, and V. Tavlor. Hierarchical
Processors-and-Memory Architecture for High Performance Computing. Frontiers
of Massively Parallel Computation Symp., Oct 1996.

14

304

